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CONSENSUS CONDITIONS OF CONTINUOUS-TIME
MULTI-AGENT SYSTEMS WITH ADDITIVE AND

MULTIPLICATIVE MEASUREMENT NOISES∗

XIAOFENG ZONG† , TAO LI‡ , AND JI-FENG ZHANG§

Abstract. This work is concerned with the consensus problem of multi-agent systems with
additive and multiplicative measurement noises. By developing general stochastic stability lemmas
for nonautonomous stochastic differential equations, stochastic weak and strong consensus condi-
tions are investigated under fixed and time-varying topologies, respectively. For the case with fixed
topologies and additive noises, the necessary and sufficient conditions for almost sure strong consen-
sus are given. It is revealed that almost sure strong consensus and mean square strong consensus
are equivalent under general digraphs, and almost sure weak consensus implies mean square weak
consensus under undirected graphs; if multiplicative noises appear, then small noise intensities do
not affect the control gain to guarantee stochastic strong consensus. For the case with time-varying
topologies, sufficient consensus conditions are given under the periodically connected condition of
the topology flow.
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1. Introduction. Consensus is a typical collective behavior and has a wide
range of applications that involve coordination of multiple entities with only limited
neighborhood information to reach a global goal for the entire team, such as multi-
agent systems in robotics [15], flocking behavior and swarms [26, 29], and sensor
networks [1, 17, 33]. Related algorithms and theoretical developments were reported
in [6, 36, 37, 39, 40, 46]. Since real networks are often in uncertain environments,
and each agent cannot measure its neighbors’ states accurately, multi-agent systems
subject to the phenomenon of stochasticity have been a topic of increasing investi-
gation in recent years (see [2, 7, 18, 19, 25, 32, 47] and the references therein). The
stochasticity is often modeled to be additive or multiplicative noises, and then the
overall system becomes a stochastic system. For such stochastic systems, the con-
vergence analysis shows more complexity and involves various convergence concepts
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(see [28, 48]). The mean square convergence and the almost sure convergence are
two very important convergence concepts and refer to mean square consensus and al-
most sure consensus, respectively, in the stochastic consensus problem of multi-agent
systems. To date, much literature has contributed to the stochastic consensus prob-
lem with additive measurement noises, where the intensity of noise is independent
of agents’ states. For discrete-time models, the distributed stochastic approxima-
tion method was introduced to attenuate the impact of communication/measurement
noises, and conditions were given for stochastic consensus. For the case with inde-
pendent channel noises, Huang and Manton [13] investigated the decreasing control
gains for mean square and almost sure consensus under fixed topologies. For the
case with martingale difference–type noises, Li and Zhang [22] gave the necessary
conditions and sufficient conditions for mean square and almost sure consensus under
both fixed and time-varying balanced topologies, respectively. This was extended to
the case with more general observation noises in Fang, Chen, and Wen [10]. Huang
and colleagues [12, 14] considered almost sure and mean square consensus under ran-
domly switching digraphs. Xu, Zhang, and Xie [45] examined the almost sure conver-
gence rates for stochastic approximation methods under fixed topologies. Aysal and
Barner [5] considered the general discrete-time consensus models and gave sufficient
conditions for almost sure consensus. For continuous-time models, Li and Zhang [21]
gave the necessary and sufficient conditions on the control gain to ensure mean square
strong consensus under balanced digraphs. For the case with linear dynamics with
absolute state feedback, Cheng, Hou, and Tan [9] studied mean square strong consen-
sus conditions. Wang and Zhang [42] investigated the sufficient conditions for almost
sure strong consensus. Tang and Li [41] gave the relationship between mean square
and almost sure convergence rates of the consensus error and a representative class
of consensus gains. Recently, some researchers have also paid attention to the case
with multiplicative noises, where the intensity of noise depends on agents’ states. Ni
and Li [31] investigated the consensus problems of the continuous-time systems with
multiplicative noises, where the noise intensities are proportional to the absolute value
of the relative states of agents and their neighbors. Then this work was extended to
the discrete-time version in [27]. Li, Wu, and Zhang [19, 20] studied the distributed
consensus with the general multiplicative noises and developed some small consensus
gain theorems to give sufficient conditions for mean square and almost sure consensus
under undirected topologies.

Most of the above works deal with the consensus problem with additive and
multiplicative measurement noises separately. When the two types of noises coexist,
the continuous-time consensus problem has not been considered before. In fact, even
for the case with only additive noises, there is no unified result under general digraphs,
and some basic problems still remain open, for example, the necessary and sufficient
conditions for almost sure strong consensus, the relationship between mean square
and almost sure strong consensus, and the necessary and sufficient conditions for
mean square and almost sure weak consensus. Moreover, for the case with time-
varying topologies, little is known about the consensus conditions if the digraph is
not strongly connected all the time.

In reference to the existing literature, this paper furthers our recent quest [19,
21, 41] on continuous-time stochastic consensus by developing unified tools under
directed networks and different types of noises. Based on the matrix theory and
the algebraic graph theory, by utilizing the variable transformation, the closed-loop
system is transformed into a nonautonomous stochastic differential equation (SDE)
driven by additive or compound noises. There is no existing result to deal with the
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stochastic stability of such SDEs. To this end, we first develop some useful stability
criteria, which involve sufficient conditions and necessary conditions, for the stability
of nonautonomous SDEs with additive noises. The criteria show a powerful ability
in examining the consensus conditions. Then similar analysis tools are developed for
the cases with compound noises and time-varying topologies. The contribution and
findings of this work are summarized as follows.

(a) Networks with fixed topologies.
(i) Additive noises case: (i-1) Stochastic stability is established for the

nonautonomous SDEs with additive noises. By the matrix theorem
and the semidecoupled methods, we develop the necessary conditions
and sufficient conditions for the mean square asymptotic stability. By
the semimartingale convergence theorem, the law of the iterated loga-
rithm for martingales, and the variation of constants formula, we es-
tablish the necessary conditions and sufficient conditions for the almost
sure asymptotic stability. (i-2) By the conditions for the mean square
asymptotic stability, we prove that the sufficient conditions on control
gain c(t) to guarantee mean square weak consensus are

∫∞
0 c(t)dt = ∞

and limt→∞
∫ t

0 e
−2λ

∫ t
s
c(u)duc2(s)ds = 0, and that the necessary condi-

tions are
∫∞

0 c(t)dt =∞ and limt→∞
∫ t

0 e
−2λ̄

∫ t
s
c(u)duc2(s)ds = 0, where

λ and λ̄ are the minimum and maximum real parts of the eigenval-
ues of the Laplacian matrix, respectively. (i-3) By the conditions for
the almost sure asymptotic stability, we get that

∫∞
0 c(t)dt = ∞ and∫∞

0 c2(s)ds < ∞ are the necessary and sufficient conditions for almost
sure strong consensus, and we show that almost sure weak consensus
can be achieved if

∫∞
0 c(t)ds = ∞ and limt→∞ c(t) log

∫ t
0 c(s) ds = 0,

and only if
∫∞

0 c(t)ds =∞ and lim inft→∞ c(t) log
∫ t

0 c(s)ds = 0 for the
case with undirected graphs. We also reveal that almost sure consen-
sus and mean square strong consensus are equivalent, and for the case
with undirected graphs, almost sure weak consensus implies mean square
weak consensus.

(ii) Compound noises case: We develop necessary conditions and sufficient
conditions for mean square weak and strong consensus, and sufficient
conditions for almost sure strong consensus. It is revealed that multi-
plicative noises with small noise intensities do not affect mean square
and almost sure strong consensus.

(b) Networks with time-varying balanced topologies and the frequent connectivity
condition.

(i) Additive noises case: We introduce some sufficient conditions on control
gain c(t) for guaranteeing mean square weak consensus, and we show
that mean square and almost sure strong consensus can be achieved if∑∞
j=0

∫ τij+1

τij
c(u)du = ∞ and

∫∞
0 c2(s)ds < ∞, where {τi}∞i=0 is the

sequence of switching time instants of the graph flow, and {τik}∞k=0 ⊆
{τi}∞i=0 are the time instants when the digraphs are strongly connected.

(ii) Compound noises case: We obtain sufficient conditions on the control
gain for mean square weak consensus and show that

∑∞
j=0

∫ τij+1

τij
c(u)du

= ∞ and
∫∞

0 c2(s)ds < ∞ can guarantee mean square and almost sure
strong consensus if the upper bound σ̄ of multiplicative noise intensities
is so small that σ̄2 < N

(N−1) supt≥0 c(t)
, where N is the number of agents.



22 XIAOFENG ZONG, TAO LI, AND JI-FENG ZHANG

The rest of the paper is organized as follows. First, the networked system and
consensus problem are introduced in section 2. Section 3 presents a stochastic consen-
sus theorem for multi-agent systems with fixed topologies, containing two subsections
for the cases with additive noises and compound noises, respectively. Section 4 ex-
tends our study to the case with time-varying topologies. Section 5 introduces the
simulations to demonstrate the theoretical analysis. Section 6 concludes the paper.

Notation. Throughout this paper, unless otherwise specified, we use the following
notation. For any complex number λ, Re(λ) and Im(λ) denote its real part and
imaginary part, respectively. 1n denotes the n-dimensional column vector with all
ones. ηN,i denotes the N -dimensional column vector with the ith element being 1
and others being zero. IN denotes the N -dimensional identity matrix. For a given
matrix or vector A, its transpose is denoted by AT , and its Euclidean norm is denoted
by ‖A‖. The eigenvalues of the matrix A ∈ RN×N are denoted by {λ1(A), . . . , λN (A)}.
If A ∈ RN×N is a real symmetric matrix, its eigenvalues are arranged as λmin(A) =
λ1(A) ≤ λ2(A) ≤ · · · ≤ λN (A) = λmax(A). For two matrices A and B, A ⊗ B
denotes their Kronecker product. Let (Ω,F ,P) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions; namely, it is right continuous and
increasing, while F0 contains all P-null sets. For a given random variable or vector X,
its mathematical expectation is denoted by EX. For a continuous martingale M(t),
its quadratic variation is denoted by 〈M〉(t) (see [38]).

2. Problem formulation. We consider the consensus control for a network of
agents with the dynamics

(2.1) ẋi(t) = ui(t), i = 1, 2, . . . , N, t ≥ 0,

where xi(t) ∈ Rn and ui(t) ∈ Rn denote the state and the control input of the ith
agent, respectively. Here, each agent has n control channels, and each component
of xi(t) is controlled by a control channel. Denote x(t) = [xT1 (t), . . . , xTN (t)]T and
u(t) = [uT1 (t), . . . , uTN (t)]T . The information flow structures among different agents are
modeled as a directed graph (digraph) G(t) = {V, E(t),A(t)}, where V = {1, 2, . . . , N}
is the set of nodes with i representing the ith agent, E(t) denotes the set of directed
edges, and A(t) = [aij(t)] ∈ RN×N is the adjacency matrix of G(t) with element
aij(t) = 1 or 0 indicating whether or not there is an information flow from agent j to
agent i directly at time t. Also, Ni(G(t)) denotes the set of the node i’s neighbors;
that is, for j ∈ Ni(G(t)), aij(t) = 1. And degi(t) =

∑N
j=1 aij(t) is called the degree

of i at time t. The Laplacian matrix of G(t) is defined as L(t) = D(t) −A(t), where
D(t) = diag(deg1(t), . . . ,degN (t)). If G(t) is balanced, then L̂(t) = LT (t)+L(t)

2 is the
Laplacian matrix of the mirror graph Ĝ(t) of G(t) [35].

In real multi-agent networks, for each agent, the information from its neighbors
may have different types of communication/measurement noises. Hence, we consider
that the measurements of relative states by agent i have the following form:

zji(t) = xj(t)− xi(t) + 1nσjiξ1ji(t) + fji(xj(t)− xi(t))ξ2ji(t),(2.2)

where j ∈ Ni(G(t)), ξlji(t) ∈ R, l = 1, 2, denote the measurement noises, σji > 0,
and fji(·) is a mapping from Rn to Rn. We assume that the measurement noises are
independent Gaussian white noises.

Assumption 2.1. The noise process ξlji(t) satisfies
∫ t

0 ξlji(s)ds = wlji(t), t ≥
0, i, j = 1, 2, . . . , N, l = 1, 2, where {wlji(t), i, j = 1, 2, . . . , N, l = 1, 2} are scalar
independent Brownian motions.
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Also assume that the noise intensity fji(·) is Lipschitz continuous.

Assumption 2.2. fji(0) = 0, i, j = 1, 2, . . . , N , and there exists a constant σ̄ ≥ 0
such that for any x, y ∈ Rn,

(2.3) ‖fji(x)− fji(y)‖ ≤ σ̄‖x− y‖, i, j = 1, 2, . . . , N.

Remark 2.3. Distributed consensus problems with additive and multiplicative
noises for continuous-time models were studied, respectively, in [21] and [19], where
the measurements of xj(t)− xi(t) have the forms zji(t) = xj(t)− xi(t) + 1nσjiξ1ji(t)
and zji(t) = xj(t)− xi(t) + fji(xj(t)− xi(t))ξ2ji(t). The case with compound noises
is motivated by the demand in applications. In many real models, the measurement
by multiple sensors is often disturbed by both additive and multiplicative noises in
multisensor multirate systems [11, Chapter 16]. The measurement model with com-
pound noises was also proposed in [43, 44]. In those papers, the consensus algorithm
was proposed with the constant control gain, and mean square weak consensus was
achieved by assuming zero additive noises. Different from [43, 44], here time-varying
control gains are used to attenuate the additive measurement noises, and sufficient
conditions and necessary conditions for the stochastic (mean square and almost sure)
weak and strong consensus will be established for continuous-time algorithms. Our
methods and results can also be applied to the discrete-time models.

We introduce the following definitions to describe the stochastic consensus on the
protocol u(t) for the system (2.1).

Definition 2.4. A distributed protocol u is called a mean square weak consen-
sus protocol if it results in the systems (2.1) and (2.2) having the following property:
for any given x(0) ∈ RNn and all distinct i, j ∈ V, limt→∞ E‖xi(t) − xj(t)‖2 =
0. If, in addition, there is a random vector x∗ ∈ Rn, such that E‖x∗‖2 < ∞
and limt→∞ E‖xi(t) − x∗‖2 = 0, i = 1, 2, . . . , N , then u is called a mean square
strong consensus protocol. Particularly, if Ex∗ = 1

N

∑N
j=1 xj(0), then u is called

an asymptotically unbiased mean square average consensus (AUMSAC) protocol, and
E‖x∗ − 1

N

∑N
j=1 xj(0)‖2 is called the mean square steady-state error.

Definition 2.5. A distributed protocol u is called an almost sure weak consensus
protocol if it results in the systems (2.1) and (2.2) having the following property: for
any given x(0) ∈ RNn and all distinct i, j ∈ V, limt→∞ ‖xi(t) − xj(t)‖ = 0, a.s.
If, in addition, there is a random vector x∗ ∈ Rn, such that P{‖x∗‖ < ∞} = 1
and limt→∞ ‖xi(t) − x∗‖ = 0, a.s., i = 1, 2, . . . , N , then u is called an almost sure
strong consensus protocol. Particularly, if Ex∗ = 1

N

∑N
j=1 xj(0), then u is called an

asymptotically unbiased almost sure average consensus (AUASAC) protocol.

It is obvious that mean square (or almost sure) strong consensus implies mean
square (or almost sure) weak consensus. The weak consensus aims to describe the
generalized asymptotic behavior of the agents, and implies that all agents will get
together but may not converge to a finite value (or random variable). For the strong
consensus, all the states must converge to a common value, which may depend on
the initial values, the noises, and the consensus algorithm. The average consensus
is the special case of the strong consensus and means that the state of each agent
converges to the average of initial states, which is usually investigated under balanced
digraphs [34].

Note that the additive noises are included in the measurement (2.2), and then
the fixed control gain fails to solve the consensus problems. In order to attenuate the
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effects of additive noises as t→∞, we use the following stochastic consensus protocol:

(2.4) ui(t) = c(t)
N∑
j=1

aij(t)zji(t), i = 1, 2, . . . , N,

where the time-varying control gain c(t) : [0,∞) → [0,∞) is a continuous function.
The central issue of stochastic consensus lies in how to choose the control gain c(t)
for guaranteeing mean square or almost sure consensus. There are many works on the
choice of control gain c(t) for multi-agent systems with additive noises, such as [21, 22]
and [24], where the following conditions on the control gain c(t) were addressed for
stochastic strong consensus:

(C1)
∫∞

0 c(t)dt =∞.
(C2)

∫∞
0 c2(t)dt <∞.

(C3) limt→∞ c(t) = 0.
It will be revealed that (C2) is not a necessary condition for the stochastic weak

consensus, and some new conditions on the control gain c(t) will be proposed.

3. Networks with fixed topologies. In this section, we consider the consensus
problem with additive noises and the fixed topology, i.e., G(t) ≡ G. The other notation
related to the topology will also be given in the simplified form free of the time t and
the topology G(t); for example, aij(t) will be denoted by aji for short.

It is well known that the existence of a spanning tree is a minimum requirement
for the deterministic consensus and the mean square strong consensus under the fixed
topology [21, 42]. Hence, the following assumption will be examined.

Assumption 3.1. The digraph G contains a spanning tree.

We first develop an auxiliary lemma, which generalizes Lemma 4 in [14]. The
proof is given in Appendix A.

Lemma 3.2. For the Laplacian matrix L, we have the following assertions:
1. There exists a probability measure π such that πTL = 0.
2. There exists a matrix Q̃ ∈ RN×(N−1) such that the matrix Q = ( 1√

N
1N , Q̃) ∈

RN×N is nonsingular and

(3.1) Q−1 =
(
νT

Q

)
, Q−1LQ =

(
0 0
0 L̃

)
,

where Q ∈ R(N−1)×N , L̃ ∈ R(N−1)×(N−1), and ν is the left eigenvector of L
with νTL = 0 and 1√

N
νT1N = 1.

3. Assumption 3.1 holds if and only if all the eigenvalues of L̃ have positive real
parts. Moreover, if Assumption 3.1 holds, then the probability measure π is
unique and ν =

√
Nπ.

Especially, if the digraph is balanced, then π = 1
N 1N , and Q can be constructed as an

orthogonal matrix with the form Q = ( 1√
N

1N , Q̃) and the inverse of Q is represented
in the form

Q−1 =
[ 1√

N
1TN

Q̃T

]
.
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3.1. Stochastic consensus under additive noises.

3.1.1. Stochastic stability. By Lemma 3.2, the consensus problem will come
down to the mean square and the almost sure asymptotic stability analysis of the
SDE with the following form:

(3.2) dX(t) = −c1(t)DX(t)dt+
d∑
i=1

σic2(t)dwi(t), X(0) ∈ Rm,

where D ∈ Rm×m, σi = [σi1, . . . , σim]T , m and d are integers, σi 6= 0 for some
i, c1(t), c2(t) : [0,∞) → [0,∞) are continuous functions, and {wi(t)}di=1 are scalar
independent Brownian motions. To facilitate the consensus analysis, here we develop
the stability criteria of the solution to (3.2) with the proofs given in Appendix A.

Let λ = min1≤i≤m Re(λi(D)) and λ̄ = max1≤i≤m Re(λi(D)). We first give the
mean square asymptotic stability of the solution to (3.2).

Lemma 3.3. The SDE (3.2) is mean square asymptotically stable, that is, limt→∞
E‖X(t)‖2 = 0 for any initial value X(0), if every eigenvalue of D has strictly positive
real part,

∫∞
0 c1(s)ds =∞, and limt→∞

∫ t
0 e
−2λ

∫ t
s
c1(u)duc22(s)ds = 0, and only if every

eigenvalue of D has strictly positive real part,
∫∞

0 c1(s)ds =∞, and

lim
t→∞

∫ t

0
e−2λ̄

∫ t
s
c1(u)duc22(s)ds = 0.

For the almost sure stability, we have the following lemma.

Lemma 3.4. The SDE (3.2) is almost surely asymptotically stable, that is, limt→∞
X(t) = 0, a.s., for any initial value X(0), if every eigenvalue of D has strictly
positive real part,

∫∞
0 c1(s)ds = ∞, and

∫∞
0 c22(s)ds < ∞ (or

∫∞
0 c1(s)ds = ∞

and limt→∞ c22(t) log
∫ t

0 c1(s)ds/c1(t) = 0), and only if
∫∞

0 c1(s)ds = ∞ and ev-
ery eigenvalue of D has strictly positive real part. Especially, if all the eigenvalues
of the matrix D are real, then the SDE (3.2) is almost surely asymptotically sta-
ble only if all the eigenvalues of the matrix D are positive,

∫∞
0 c1(s)ds = ∞, and

lim inft→∞ c22(t) log
∫ t

0 c1(s)ds/c1(t) = 0.

Remark 3.5. In the previous literature, there are many results on the mean square
and almost sure asymptotic stability of SDEs (see [3, 4, 8, 28, 48] and the references
therein). For the mean square asymptotical stability, almost all existing stability re-
sults are based on the multiplicative noises, and the necessary and sufficient conditions
for the linear multidimensional SDEs with additive noises have not been established.
For the almost sure asymptotic stability, the works [3, 4, 8] introduced the necessary
conditions and sufficient conditions of almost sure asymptotic stability for SDEs with
additive noises. But, they focused on the scalar SDEs with time-invariant drift terms
and cannot be used to examine (3.2). Motivated by the above works, in Lemmas
3.3 and 3.4, we develop mean square and almost sure asymptotic stability conditions
for n-dimensional and nonautonomous SDEs that can be used to solve mean square
and almost sure consensus problems of multi-agent systems with additive noises and
time-varying noise intensities.

3.1.2. Mean square weak consensus. The necessary and sufficient conditions
of mean square strong consensus are now clear; see [21, 42]. Here, we concentrate on
mean square weak consensus and introduce two new conditions on the control gain
c(t):
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(C4) limt→∞
∫ t

0 e
−2λ

∫ t
s
c(u)duc2(s)ds = 0, where λ = min2≤i≤N Re(λi(L)).

(C4′) limt→∞
∫ t

0 e
−2λ̄

∫ t
s
c(u)duc2(s)ds = 0, where λ̄ = max2≤i≤N Re(λi(L)).

Theorem 3.6. Suppose that Assumption 2.1 holds and fji(x) ≡ 0, i, j ∈ V. Then
the protocol (2.4) is a mean square weak consensus protocol if Assumption 3.1, (C1),
and (C4) hold, and only if Assumption 3.1, (C1), and (C4′) hold.

Proof. Substituting the protocol (2.4) into the system (2.1) and using Assumption
2.1 produce

dx(t) = −c(t)(L ⊗ In)x(t)dt+ c(t)
N∑

i,j=1

aijσji(ηN,i ⊗ 1n)dw1ji(t).(3.3)

Let ν be defined as in Lemma 3.2, and let JN = 1√
N

1NνT . Noting that L1N = 0 and
νTL = 0, then (IN − JN )L = L = L(IN − JN ). Let δ(t) = [(IN − JN )⊗ In]x(t); then
we have

dδ(t) = −c(t)(L ⊗ In)δ(t)dt+ c(t)
N∑

i,j=1

aijσji((IN − JN )ηN,i ⊗ 1n)dw1ji(t).

Define δ̃(t) = (Q−1 ⊗ In)δ(t) = [δ̃T1 (t), . . . , δ̃TN (t)]T and δ(t) = [δ̃T2 (t), . . . , δ̃TN (t)]T .
By the definition of Q−1 given in Lemma 3.2, we have δ̃1(t) = (νT ⊗ In)δ(t) =
(νT (IN − JN )⊗ In)x(t) = 0 and

dδ(t) = −c(t)(L̃ ⊗ In)δ(t)dt+ c(t)
N∑

i,j=1

aijσji(Q(IN − JN )ηN,i ⊗ 1n)dw1ji(t),(3.4)

where Q is defined in Lemma 3.2. Note that δi(t) = xi − 1√
N

∑N
k=1 νkxk(t) =

1√
N

∑N
k=1 νk(xi−xk). It can be seen that if the protocol (2.4) is a mean square weak

consensus protocol, then the solution to SDE (3.4) must be mean square asymptoti-
cally stable. Note that Assumption 3.1 holds if and only if all the eigenvalues of L̃ have
positive real parts (Lemma 3.2). Letting c1(t) = c2(t) and applying Lemma 3.3 to the
SDE (3.4) produce the necessity of Assumption 3.1, (C1), and (C4′) immediately.

Assume now that Assumption 3.1 and conditions (C1) and (C4) hold and let
ν =

√
Nπ, where π is the unique probability measure satisfying πTL = 0. Hence,

applying Lemma 3.3 yields the mean square asymptotic stability of the SDE (3.4),
which also produces limt→∞ E‖δ(t)‖2 = 0 for any initial value x(0). Note that
δi(t) = xi −

∑N
k=1 πkxk(t), i = 1, . . . , N ; then for i 6= j, limt→∞ E‖xj(t) − xi(t)‖2 ≤

2 limt→∞ E‖xj(t)−
∑N
k=1 πkxk(t)‖2 + 2 limt→∞ E‖xi(t)−

∑N
k=1 πkxk(t)‖2 = 0. That

is, mean square weak consensus follows, and the sufficiency is obtained.

The following corollary argues the relationship between conditions (C1)–(C4) and
mean square weak consensus.

Corollary 3.7. Suppose that Assumption 2.1 holds and fji(x) ≡ 0, i, j ∈ V.
Then the protocol (2.4) is a mean square weak consensus protocol if Assumption 3.1,
(C1), and (C3) hold. Especially, if c(t) is a decreasing function, then the protocol
(2.4) is a mean square weak consensus protocol if and only if Assumption 3.1, (C1),
and (C3) hold.
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Proof. By (C1), (C3), and l’Hôpital’s rule, we have

lim
t→∞

∫ t

0
exp

{
− λ

∫ t

s

c(u)du
}
c2(s)ds

= lim
t→∞

∫ t
0 exp

{
λ
∫ s

0 c(u)du
}
c2(s)ds

exp
{
λ
∫ t

0 c(u)du
}

=
1
λ

lim
t→∞

c(t) = 0 ∀ λ > 0.

Then (C3) under (C1) implies (C4). By Theorem 3.6, the desired mean square weak
consensus follows.

Assume that c(t) is a decreasing function. We need only prove the “only if” part.
If the protocol (2.4) is a mean square weak consensus protocol, by Theorem 3.6, we
obtain that Assumption 3.1 and conditions (C1) and (C4′) hold. Note that c(t) is a
decreasing function; then for any λ > 0,∫ t

0
e−2λ

∫ t
s
c(u)duc2(s)ds ≥ c(t)e−2λ

∫ t
0 c(u)du

∫ t

0
e2λ

∫ s
0 c(u)duc(s)ds

=
c(t)
2λ

(1− e−2λ
∫ t
0 c(u)du),

which implies c(t) ≤ 2λ
∫ t

0 e
−2λ

∫ t
s
c(u)duc2(s)ds(1− e−2λ

∫ t
0 c(u)du)−1 and tends to zero

as t→∞. Hence, (C4′) under (C1) also implies (C3) if c(t) is a decreasing function,
and then the necessity follows.

Remark 3.8. It was shown in [21] that the necessary and sufficient conditions of
mean square strong consensus are (C1) and (C2). Since mean square strong consensus
implies mean square weak consensus and Theorem 3.6 shows that mean square weak
consensus implies (C4′), one may wonder whether the condition (C4′) conflicts with
(C2). In fact, they are not contradictory, and (C2) under (C1) implies (C4′) (see [21]).

3.1.3. Almost sure strong and weak consensus. Compared with the anal-
ysis of mean square consensus, almost sure consensus is more difficult. This difficulty
stems from the almost sure asymptotic stability theory of SDEs. Only a few efforts
have been made in the analysis of almost sure consensus; see [13, 22] for discrete-time
systems and [25, 42] for continuous-time models, which showed that (C1) and (C2)
are the sufficient conditions for almost sure strong consensus. We first prove that
(C1) and (C2) are also necessary for almost sure strong consensus.

Theorem 3.9. Suppose that Assumption 2.1 holds and fji(x) ≡ 0, i, j ∈ V. Then
the protocol (2.4) is an almost sure strong consensus protocol if and only if Assumption
3.1, (C1), and (C2) hold.

Proof. The sufficiency follows from [42], and the necessity is proved as follows.
If the protocol (2.4) is an almost sure strong consensus protocol, then we have
limt→∞ ‖δ(t)‖ = 0, a.s., where δ(t) is defined by (3.4). Note that Assumption 3.1 is
equivalent to assuming that all the eigenvalues of L̃ have positive real parts (Lemma
3.2). Then by Lemma 3.4, we have that Assumption 3.1 and condition (C1) hold.
Then we argue the necessity of (C2). By the property of the matrix L and (3.3), we
have

(3.5) (πT ⊗ In)x(t) = (πT ⊗ In)x(0) + M̄(t),
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where M̄(t) =
∑N
i,j=1 aijσji

∫ t
0 c(s)[π

T ηN,i⊗1n]dw1ji(s). It is evident that the almost
sure strong consensus implies that (πT ⊗ In)x(t) converges almost surely to a random
variable. Note that (πT ⊗In)x(t) converges almost surely if and only if the limit of the
continuous local martingale M̄(t) exists almost surely, denoted by M̄(∞). But this is
also equivalent to limt→∞〈M̄〉(t) <∞, a.s. (see [38, Proposition 1.8]). Note also that
〈M̄〉(t) = n

∑N
i,j=1 a

2
ijσ

2
jiπ

2
i

∫ t
0 c

2(s)ds (see [38, Theorem 1.8]). Hence, (πT ⊗ In)x(t)
converges almost surely to a random variable if and only if (C2) holds.

Remark 3.10. Combining Theorem 3.9 and Remark 3.8 gives that mean square
strong consensus and almost sure strong consensus are equivalent. Here, (C2) aims at
guaranteeing that all agents converge to a common value in the sense of both mean
square and probability one.

Note that almost sure strong consensus implies almost sure weak consensus. That
is, (C1) and (C2) can guarantee almost sure weak consensus. But it is natural to
pursue the weaker conditions to guarantee almost sure weak consensus. Thanks to
Lemma 3.4, we can examine almost sure weak consensus without condition (C2).
Moreover, we can obtain a finer necessary condition under the following assumption.
In fact, the case with undirected graphs falls in this assumption.

Assumption 3.11. All the eigenvalues of the Laplacian matrix L are real.

Here, we introduce the following two conditions for the almost sure weak consen-
sus, which will be proved to be sufficient and necessary, respectively:

(C5) limt→∞ c(t) log
∫ t

0 c(s)ds = 0.
(C5′) lim inft→∞ c(t) log

∫ t
0 c(s)ds = 0.

Note that the almost sure weak consensus problem of the multi-agent system (2.1)
with additive noises is actually the almost sure asymptotic stability problem of the
SDE (3.4). By Lemmas 3.2 and 3.4, we can easily obtain the following consensus
theorem.

Theorem 3.12. Suppose that Assumption 2.1 holds and fji(x) ≡ 0, i, j ∈ V.
Then the protocol (2.4) is an almost sure weak consensus protocol if Assumption 3.1,
(C1), and (C5) hold, and only if Assumption 3.1 and (C1) hold. Especially, if As-
sumption 3.11 holds, then the protocol (2.4) is an almost sure weak consensus protocol
only if Assumption 3.1, (C1), and (C5′) hold.

Remark 3.13. Note that almost sure strong consensus implies almost sure weak
consensus. Further, if Assumption 3.1, (C1), and (C2) hold, then almost sure weak
consensus follows. Theorem 3.12 showed that condition (C5′) is necessary for almost
sure weak consensus. One may hope that (C2) can produce (C5′). In fact, that is true
under (C1). To see this, if (C5′) fails, then there exists a constant c > 0, such that
lim inft→∞ c(t) log

∫ t
0 c(s)ds > c. This implies that for some T > 0, c(t) log

∫ t
0 c(s)ds >

c/2, t > T . Hence, from (C1),
∫ t

0 c
2(s)ds > c

2

∫ t
T

d(
∫ s
0 c(u)du)

log
∫ s
0 c(u)du → ∞ as t tends to ∞,

which is in conflict with (C2).

Remark 3.14. Note that almost sure weak consensus implies (C1) and (C5′),
which lead to (C3). Then mean square weak consensus is obtained from Corollary
3.7. Hence, almost sure weak consensus implies mean square weak consensus under
Assumption 3.11.

Remark 3.15. Here, we remark that weak consensus may not be strong consensus.
For example, consider c(t) = (1 + t)−1/3, which satisfies (C1), (C3), and (C5), but
defies (C2). In view of the consensus results above, mean square and almost sure
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weak consensus both hold, but neither mean square nor almost sure strong consensus
holds. This is also demonstrated in the numerical examples of section 5.

Remark 3.16. The necessary and sufficient conditions for mean square strong con-
sensus were established in [21, 42]. However, the necessary and sufficient conditions
for almost sure strong consensus, and conditions for stochastic weak consensus have
not been taken into account. This paper fills in the gap and reveals the relationship
between mean square and almost sure consensus. For examining stochastic weak con-
sensus, stochastic stability criteria are developed by the semidecoupled technique and
the law of the iterated logarithm for martingales (see the proofs of Lemmas 3.3 and
3.4 in Appendix A). These criteria differ from those in [21, 42] on stochastic strong
consensus.

3.2. Stochastic consensus under compound noises. We continue to inves-
tigate the more complex models, where multiplicative and additive noises coexist in
the information communication. We first examine the two-agent case (N = 2) with
fji(x) = σ̄jix.

3.2.1. Two-agent case. It is easy to understand that the existence of a span-
ning tree is necessary for stochastic consensus for the two-agent case and implies that
there exists at least one pair (i, j) such that aij 6= 0. Here, we let ā = a12 + a21,
a = (a12σ̄

2
21 + a21σ̄

2
12)/2, and µ̃(t) = āc(t)− ac2(t), t ≥ 0, and give the corresponding

convergence conditions.

Theorem 3.17. Suppose Assumption 2.1 holds, and fji(x) = σ̄jix with σ̄ji > 0,
i, j = 1, 2, N = 2. Then the protocol (2.4) is a mean square weak consensus protocol
if and only if

∫∞
0 µ̃(s)ds = ∞ and limt→∞

∫ t
0 e
−2

∫ t
s
µ̃(u)duc2(s)ds = 0. Moreover, the

protocol (2.4) is a mean square strong consensus protocol if and only if (C1) and (C2)
hold.

Proof. Let x̃(t) = x1(t)− x2(t); then by the definition of xi(t), i = 1, 2, we have

dx̃(t) = −āc(t)x̃(t)dt− a12σ̄21c(t)x̃(t)dw221(t)
− a21σ̄12c(t)x̃(t)dw212(t) + dM1(t),(3.6)

where M1(t) = 1n(a12σ21
∫ t

0 c(s)dw121(s) − a21σ12
∫ t

0 c(s)dw212(s)) is a martingale
vanishing at zero. By the Itô formula,

d‖x̃(t)‖2 = −2µ̃(t)‖x̃(t)‖2dt+ np0c
2(t)dt− 2a12σ̄21c(t)‖x̃(t)‖2dw221(t)

− 2a21σ̄12c(t)‖x̃(t)‖2dw212(t) + 2x̃(t)T dM1(t),(3.7)

where p0 =
∑2
i,j=1 aijσ

2
ij > 0. Taking expectations on both sides gives

E‖x̃(t)‖2 = ‖x̃(0)‖2 − 2
∫ t

0
µ̃(s)‖x̃(s)‖2ds+ np0

∫ t

0
c2(s)ds,(3.8)

which implies

E‖x̃(t)‖2 = ‖x̃(0)‖2e−2
∫ t
0 µ̃(s)ds + np0

∫ t

0
e−2

∫ t
s
µ̃(u)duc2(s)ds.(3.9)

Hence, the necessary and sufficient conditions of mean square weak consensus are
obtained.

We now prove the second assertion. Assume (C1) and (C2) hold. Let π1 = a12
ā ,

π2 = a21
ā , and x̄(t) = π1x1(t) + π2x2(t); then x̄(t) = x̄(0) + M2(t), where M2(t) =
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π1a12σ̄21
∫ t

0 c(s)x̃(s)dw221(s)−π2a21σ̄12
∫ t

0 c(s)x̃(s)dw212(t)+1nπ1a12σ21
∫ t

0 c(s) dw121

(s)− 1nπ2a21σ12
∫ t

0 c(s)dw212(s) satisfies

E‖M2(t)‖2 = (π2
1a12σ̄

2
21 + π2

2a21σ̄
2
12)
∫ t

0
c2(s)E‖x̃(s)‖2ds

+n(π2
1a12σ

2
21 + π2

2a21σ
2
12)
∫ t

0
c2(s)ds.(3.10)

If (C1) and (C2) hold, then
∫∞

0 µ̃(s)ds = ā
∫∞

0 c(t)dt− a
∫∞

0 c2(t)dt =∞. Moreover,

lim
t→∞

∫ t

0
e−2

∫ t
s
µ̃(u)duc2(s)ds = lim

t→∞

∫ t

0
e2a

∫ t
s
c2(u)due−2ā

∫ t
s
c(u)duc2(s)ds

≤ e2a
∫∞
0 c2(u)du lim

t→∞

∫ t

0
e−2ā

∫ t
s
c(u)duc2(s)ds = 0.(3.11)

Hence, mean square weak consensus follows, and then E‖x̃(t)‖2 is bounded, which
together with (3.10) also implies limt→∞ E‖M2(t)‖2 < ∞. The martingale con-
vergence theorem [16, Corollary 7.22] admits that M2(t) converges in the sense of
mean square to a random variable, denoted by M2(∞). Then x̄(t) converges to
x∗ := x̄(0)+M2(∞) in the sense of mean square, and we have limt→∞ E‖x1(t)−x∗‖2 ≤
2 limt→∞ E‖x1(t) − x̄(t)‖2 + 2 limt→∞ E‖x̄(t) − x∗‖2 = 0. This together with mean
square weak consensus also yields limt→∞ E‖x2(t)−x∗‖2 = 0, and mean square strong
consensus follows.

It remains to show the necessity of (C1) and (C2) for mean square strong consen-
sus. Note that mean square strong consensus implies mean square weak consensus,
which together with the first assertion also gives

∫∞
0 µ̃(s)ds =∞. Also note that mean

square strong consensus implies the mean square convergence of M2(t), which together
with (3.10) produces (C2). Hence, ā

∫∞
0 c(t)dt =

∫∞
0 µ̃(s)ds+ a

∫∞
0 c2(t)dt =∞. The

proof is completed.

Theorem 3.18. Suppose that Assumption 2.1 holds and fji(x) = σ̄jix with σ̄ji >
0, i, j = 1, 2, N = 2. Then the protocol (2.4) is an almost sure strong consensus
protocol if (C1), (C2) hold and there exists a constant t0 > 0 such that µ̃(t) =
āc(t)− ac2(t) > 0 for all t ≥ t0, and only if (C1) and (C2) hold.

Proof. Note that (3.6) admits the explicit solution

(3.12) x̃(t) = x̃(0)y(t, 0) +
∫ t

0
y(t, s)dM1(s),

where y(t, s) = exp{−ā
∫ t
s
c(u)du}E(t, s) with E(t, s) = exp{−a

∫ t
s
c2(u)du − a12σ̄21∫ t

s
c(u)dw221(u) − a21σ̄12

∫ t
s
c(u)dw212(u)}. It is easy to see that E(t, 0) is an expo-

nential martingale.
First we show the “only if” part. Note that the almost sure strong consensus gives

that x̄(t) converges almost surely, which is equivalent to saying that the limit of the
continuous local martingale M2(t) exists almost surely, denoted by M2(∞). This is
also equivalent to limt→∞〈M2〉(t) <∞, a.s. (see [38, Proposition 1.8, p. 183]). Note
that

〈M2〉(t) = (π2
1a12σ̄

2
21 + π2

2a21σ̄
2
12)
∫ t

0
c2(s)‖x̃(s)‖2ds

+n(π2
1a12σ

2
21 + π2

2a21σ
2
12)
∫ t

0
c2(s)ds.(3.13)
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That is, almost sure strong consensus gives (C2). Moreover, almost sure strong con-
sensus implies that limt→∞ ‖x̃(t)‖ = 0, a.s., for any initial value x̃(0). This together
with (3.12) also implies limt→∞ ‖y(t, 0)‖ = 0, a.s., and limt→∞

∫ t
0 y(t, s)dM1(s) = 0,

a.s. Condition (C2) together with the martingale convergence theorem implies that
the stochastic integrals

∫ t
0 c(u)dw221(u) and

∫ t
0 c(u)dw212(u) converge almost surely,

and then gives that the exponential martingale E(t, 0) converges almost surely to
some positive random variable e0. By the definition of y(t, 0), we have limt→∞
y(t, 0) = e0e

−ā
∫∞
0 c(s)ds, a.s. Hence, (C1) holds. Therefore, the “only if” part fol-

lows.
Now we need to prove the “if” part. By (3.7), we get that for any t ≥ t0,

‖x̃(t)‖2 = ‖x̃(t0)‖2 −A1(t, t0) +A2(t, t0) +M3(t, t0),(3.14)

where A1(t, t0) = 2
∫ t
t0
µ̃(s)‖x̃(s)‖2ds, A2(t, t0) = np0

∫ t
t0
c2(s)ds, and M3(t, t0) =

− 2a12σ̄21
∫ t
t0
c(s)‖x̃(s)‖2dw221(s)−2a21σ̄12

∫ t
t0
c(s)‖x̃(s)‖2dw212(s)+2

∫ t
t0
x̃(s)T dM1(s).

Note that µ̃(t) > 0 for t ≥ t0; then A1(t, t0) is increasing. It is observed from (C2) that
A2(∞, t0) <∞. Hence, by the semimartingale convergence theorem (Lemma A.1), we
can see that limt→∞ ‖x̃(t)‖ < ∞, a.s. Theorem 3.17 shows that conditions (C1) and
(C2) produce limt→∞ E‖x̃(t)‖2 = 0, and then there exists a subsequence converging
to zero almost surely. The uniqueness of the limit admits limt→∞ ‖x̃(t)‖ = 0, a.s.
Then almost sure weak consensus follows. Note that limt→∞ ‖x̃(t)‖ = 0, a.s. implies
‖x̃(t)‖ is bounded almost surely. Combining (3.13), (C2), and Proposition 1.8 of [38]
gives x∗ := limt→∞ x̄(t) < ∞, a.s., which together with almost sure weak consensus
implies almost sure strong consensus.

3.2.2. Multi-agent case. The appearance of multiplicative noises makes the
transformed stochastic systems become SDEs with compound noises, which cannot
be semidecoupled as those in the proofs of Lemmas 3.3 and 3.4 with only additive
noises. In this subsection, we aim to seek other strategies to examine the consensus
problem with compound noises. Note that the matrix −L̃ defined in Lemma 3.2 is
Hurwitz if the digraph G contains a spanning tree. Then we have the following lemma.

Lemma 3.19. If Assumption 3.1 holds, then there exists a unique positive definite
matrix P such that

−P L̃ − L̃TP = −IN−1.

First, we concentrate on mean square consensus. Let qi be the ith row of Q̃,
Q(i) = Q(IN−JN )ηN,i. For the matrix P > 0 determined by Lemma 3.19, define B̃ =∑N
i=1[Q

T
(i) PQ(i)]

∑N
j=1 aij [(qj−qi)T (qj−qi)] and µ(t) = c(t)λmin(IN−1−c(t)σ̄2B̃).

We need the following assumption.
(C6) There exists a constant t0 > 0 such that µ(t) > 0 for all t ≥ t0.

Theorem 3.20. Suppose that Assumptions 2.1 and 2.2 hold. Then the protocol
(2.4) is a mean square weak consensus protocol if Assumption 3.1 and (C6) hold,∫∞

0 µ(s)ds = ∞, and limt→∞
∫ t

0 e
−λ−1

max(P )
∫ t

s
µ(u)duc2(s)ds = 0, and only if Assump-

tion 3.1, (C1), and (C4′) hold. Moreover, the protocol (2.4) is a mean square strong
consensus protocol if Assumption 3.1, (C1), (C2), and (C6) hold, and only if Assump-
tion 3.1, (C1), and (C2) hold.

Proof. Substituting the protocol (2.4) into the system (2.1) and using Assumption
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2.1 yield

dx(t) = −c(t)(L ⊗ In)x(t)dt+ dM4(t),(3.15)

where M4(t) =
∑N
i,j=1 aijσji(ηN,i ⊗ 1n)

∫ t
0 c(s)dw1ji(s) +

∑N
i,j=1 aij

∫ t
0 c(s)[ηN,i ⊗

fji(xj(s) − xi(s))]dw2ji(s). Continuing to use the definitions of δ(t), δ̃(t), and δ(t),
similarly to the proof of Theorem 3.6, we obtain

dδ(t) = −c(t)(L̃ ⊗ In)δ(t)dt+ dM5(t),(3.16)

where M5(t) =
∑N
i,j=1 aijσji(Q(i) ⊗ 1n)

∫ t
0 c(s)dw1ji(s) +

∑N
i,j=1 aij

∫ t
0 c(s)[Q(i) ⊗

fji(δj(s) − δi(s))]dw2ji(s). Note that Assumption 3.1 holds. Let V (t) = δ(t)T (P ⊗
In)δ(t), where P is the positive definite matrix defined in Lemma 3.19. Using Itô’s
formula and Lemma 3.19, we have

dV (t) = −c(t)‖δ(t)‖2dt+ c2(t)F (t)dt+ C2c
2(t)dt+ dM6(t),(3.17)

where F (t) =
∑N
i,j=1 aijQ(i)TPQ(i)‖fji(δj(t)−δi(t))‖2, C2 = n

∑N
i,j=1 aijσ

2
ji[Q(i)TP

Q(i)], and M6(t) = 2
∑N
i,j=1 aijσji

∫ t
0 c(s)δ(s)

T (PQ(i) ⊗ 1n)dw1ji(s) + 2
∑N
i,j=1 aij∫ t

0 δ(s)
T [PQ(i)⊗ fji(δj(s)− δi(s))]c(s)dw2ji(s). Note that

(3.18) δ(t) = (Q⊗ In)δ̃(t) =
1√
N

(1N ⊗ In)δ̃1(t) + (Q̃⊗ In)δ(t).

Then δi(t) = 1√
N
δ̃1(t) + (qi ⊗ In)δ(t) and δj(t) − δi(t) = [(qj − qi) ⊗ In]δ(t). By

Assumption 2.2 and the definition of B̃, we have

F (t) ≤ σ̄2
N∑
i=1

[Q(i)TPQ(i)]
N∑
j=1

aij‖δj(t)− δi(t)‖2

= σ̄2δ(t)T
(

N∑
i=1

[Q(i)TPQ(i)]
N∑
j=1

aij [(qj − qi)T (qj − qi)⊗ In]

)
δ(t)

= σ̄2δ(t)T (B̃ ⊗ In)δ(t).(3.19)

Let U(t) = eλ
−1
max(P )

∫ t
0 µ(s)dsV (t). Note that (C6) holds, that is, µ(t) > 0 for t ≥ t0.

Substituting (3.19) into (3.17) and applying integration by parts to U(t) give

dU(t) = λ−1
max(P )µ(t)U(t)dt+ eλ

−1
max(P )

∫ t
0 µ(s)dsdV (t)

≤ C2e
λ−1

max(P )
∫ t
0 µ(s)dsc2(t)dt+ eλ

−1
max(P )

∫ t
0 µ(s)dsdM6(t), t ≥ t0.

Noting that M6(t) is a martingale vanishing at 0, we obtain

EV (t) ≤ e−λ
−1
max(P )

∫ t
t0
µ(s)dsEV (t0) + C2

∫ t

t0

eλ
−1
max(P )

∫ t
s
µ(u)duc(s)2ds.(3.20)

Therefore, from
∫∞

0 µ(s)ds = ∞ and limt→∞
∫ t

0 e
−λ−1

max(P )
∫ t

s
µ(u)duc2(s)ds = 0, we

have limt→∞ EV (t) = 0, which implies limt→∞ E‖δ(t)‖2 = 0, and then mean square
weak consensus follows from xj(t)− xi(t) = [(qj − qi)⊗ In]δ(t).
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The necessity is proved as follows. By the Jordan matrix decomposition, there
exists an invertible matrix P1 such that P−1

1 L̃P1 = JL̃. Here, JL̃ is the Jordan normal
form of L̃, i.e.,

JL̃ = diag(Jλ1,n1 , Jλ2,n2 , . . . , Jλl,nl
),

l∑
k=1

nk = N − 1,

where

Jλk,nk
=


λk 1 · · · 0 0
0 λk · · · 0 0
...

...
. . .

...
...

0 0 · · · λk 1
0 0 · · · 0 λk


is the corresponding Jordan block of size nk with eigenvalue λk. Here, λ1, λ2, . . . , λl
are all the eigenvalues of L̃. Let ζ(t) = (P−1

1 ⊗ In)δ = [ζ1(t)T , . . . , ζN−1(t)T ]T ,
ζi(t) ∈ Rn, i = 1, . . . , N − 1. We have from (3.16) that

dζ(t) = −c(t)(JL̃ ⊗ In)ζ(t)dt+ (P−1
1 ⊗ In)dM5(t).

Considering the kth Jordan block and its corresponding parts ζk = [ζTk,1, . . . , ζ
T
k,nk

]T

and P−1
1 (k) = [pTk,1, . . . , p

T
k,nk

]T , where ζk,j = ζkj
(t) with kj = (

∑k−1
i=1 ni + j), and

pk,j = pkj
with pkj

being the kjth row of P−1
1 , we have

dζk(t) = −c(t)(Jλk,nk
⊗ In)ζk(t)dt+ (P−1

1 (k)⊗ In)dM5(t).

Then by the variation of constants formula, we obtain

ζk,nk
(t) = e−λk

∫ t
0 c(u)duζk,nk

(0) +
∫ t

0
e−λk

∫ t
s
c(u)du(pk,nk

⊗ In)dM5(s).(3.21)

Hence,

E‖ζk,nk
(t)‖2 = e−2Re(λk)

∫ t
0 c(u)du‖ζk,nk

(0)‖2 + S(t)

+n

N∑
i,j=1

aijσ
2
ji‖pk,nk

Q(i)‖2
∫ t

0
e−2Re(λk)

∫ t
s
c(u)duc2(s)ds,(3.22)

where S(t) =
∑N
i,j=1 aij‖pk,nk

Q(i)‖2
∫ t

0 e
−2Re(λk)

∫ t
s
c(u)duc2(s)‖fji(δj(s) − δi(s))‖2ds

≥ 0. Note that mean square strong consensus implies that for ζk,nk
(0) 6= 0, limt→∞

E‖ζk,nk
(t)‖2 = 0, which means that the three terms on the right-hand side of (3.22)

all tend to zero. It gives Re(λk) > 0 and condition (C1) that the first term tends to
zero. By Lemma 3.2, we know that Assumption 3.1 holds. It gives (C4′) that the
third term tends to zero.

Now, we aim to examine mean square strong consensus under (C1), (C2), and
(C6). First, we see that µ(t) ≥ c(t)− c2(t)σ̄2λmax(B̃), which together with (C1) and
(C2) implies

∫∞
0 µ(s)ds = ∞. Moreover, by the methods used in proving (3.11), we

have limt→∞
∫ t

0 e
−λ−1

max(P )
∫ t

s
µ(u)duc2(s)ds = 0. Hence, the first assertion tells us that

if (C1), (C2), and (C6) hold, then mean square weak consensus follows, which together



34 XIAOFENG ZONG, TAO LI, AND JI-FENG ZHANG

with the continuity of E‖δ(t)‖2 gives that E‖δ(t)‖2 is bounded by some C3 > 0. Let
M̄4(t) = (πT ⊗ In)M4(t). Note that (3.15) implies

(3.23) (πT ⊗ In)x(t) = (πT ⊗ In)x(0) + M̄4(t).

Then we have

E‖M̄4(t)‖2 = C4

∫ t

0
c2(s)ds+

N∑
i,j=1

aijπ
2
i

∫ t

0
c2(s)E‖fji(δj(s)− δi(s))‖2ds,(3.24)

where C4 = n
∑N
i,j=1 aijσ

2
jiπ

2
i . By Assumption 2.2 and E‖δ(t)‖2 ≤ C3, we get

E‖M̄4(t)‖2 ≤ (C4 + C5)
∫ t

0
c2(s)ds,(3.25)

where C5 = C3σ̄
2∑N

i,j=1 aijπ
2
i ‖qj−qi‖2. Hence, under (C2), E‖M̄4(t)‖2 is bounded by

C6 = (C4 + C5)
∫∞

0 c2(s)ds > 0. The martingale convergence theorem [16, Corollary
7.22] admits that M̄4(t) converges in mean square to a random variable, denoted
by M̄4(∞). Let x∗ = (πT ⊗ In)x(0) + M̄4(∞). Note that xi(t) − (πT ⊗ In)x(t) =
xi(t)−

∑N
j=1 πjxj(t) =

∑N
j=1 πj(xi(t)−xj(t)). Then the mean square weak consensus

implies that limt→∞ E‖xi(t)− (πT ⊗ In)x(t)‖2 = 0, and then

lim
t→∞

E‖xi(t)− x∗‖2 ≤ 2 lim
t→∞

E‖xi(t)− (πT ⊗ In)x(t)‖2

+ 2 lim
t→∞

E‖x∗ − (πT ⊗ In)x(t)‖2 = 0, i ∈ V.

Therefore, mean square strong consensus follows. The necessities of (C1) and As-
sumption 3.1 are proved in the assertion above related to mean square weak consen-
sus. Note that mean square strong consensus implies that (πT ⊗ In)x(t) converges in
the sense of mean square, which means that M̄4(t) converges in mean square. This
together with (3.24) produces condition (C2). Hence, the proof is completed.

Similar to Corollary 3.7, we have the following corollary, which gives another
sufficient condition for mean square weak consensus.

Corollary 3.21. Suppose that Assumptions 2.1, 2.2, and 3.1 hold. If
∫∞

0 µ(s)ds
=∞ and (C3) holds, then the protocol (2.4) is a mean square weak consensus protocol.

Proof. It is obvious that (C3) implies (C6). Moreover, by
∫∞

0 µ(s)ds =∞, (C3),
and l’Hôpital’s rule, we have

lim
t→∞

∫ t

0
e−λ

−1
max(P )

∫ t
s
µ(u)duc2(s)ds = lim

t→∞

∫ t
0 exp

{
λ−1

max(P )
∫ s

0 µ(u)du
}
c2(s)ds

exp
{
λ−1

max(P )
∫ t

0 µ(u)du
}

= λmax(P ) lim
t→∞

c2(t)
µ(t)

= 0.

That is, (C3) under
∫∞

0 µ(s)ds =∞ implies limt→∞
∫ t

0 e
−λ−1

max(P )
∫ t

s
µ(u)duc2(s)ds = 0.

By Theorem 3.20, the desired mean square weak consensus follows.

Based on the semimartingale convergence theorem, we have the following almost
sure strong consensus criterion.
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Theorem 3.22. Suppose that Assumptions 2.1, 2.2, and 3.1 hold. Then the pro-
tocol (2.4) is an almost sure strong consensus protocol if (C1), (C2), and (C6) hold,
and only if (C2) holds.

Proof. For any t ≥ t0, we have from (C6) that c(t)‖δ(t)‖2 − c2(t)F (t) > 0. Let
A1(t) = C2

∫ t
t0
c2(s)ds and A2(t) =

∫ t
t0

(c(s)‖δ(s)‖2 − c2(s)F (s))ds, t ≥ t0. Then by
(C6), we know that A1(t) and A2(t) are two increasing processes for any t ≥ t0. By
(3.17), we have

V (t) = V (t0) +A1(t)−A2(t) +M6(t)−M6(t0).(3.26)

Similar to the proof of almost sure strong consensus in Theorem 3.18, we can use the
semimartingale convergence theorem and Theorem 3.20 to obtain almost sure strong
consensus.

Note that almost sure strong consensus gives that the martingale M̄4(t) con-
verges almost surely. This together with Proposition 1.8 in [38, p. 183]) also implies
limt→∞〈M̄4〉(t) <∞, a.s. It can be seen that

〈M̄4〉(t) = C4

∫ t

0
c2(s)ds+

N∑
i,j=1

aijπ
2
i

∫ t

0
c2(s)‖fji(δj(s)− δi(s))‖2ds.(3.27)

Hence, (C2) holds.

Remark 3.23. Note that (C3) implies (C6). Then if Assumption 3.1 and (C1)–
(C3) hold (for example, c(t) = 1

1+t ), we can obtain mean square and almost sure
strong consensus.

Remark 3.24. Remark 3.8 and Theorem 3.9 show that if (C1)–(C2) hold, we can
obtain mean square and almost sure strong consensus of multi-agent systems with only
additive noises. When multiplicative noises also appear, we can get from Theorems
3.20 and 3.22 that the multiplicative noises do not affect the control gain to assure
mean square and almost sure strong consensus if the corresponding noise intensities
are so small that σ̄2 < (supt≥0 c(t)λmax(B̃))−1.

4. Networks with time-varying topologies. Note that the agent number N
is finite and aij(t) takes two values for t ≥ 0; then the set of possible digraphs G(t) is
also finite, i.e., G(t) ∈ {G1,G2, . . . ,Gm0}, m0 > 0, is an integer, where Gi = {V, Ei,Ai},
i = 1, . . . ,m0. In this section, we assume that the time-varying topology G(t) satisfies
the following assumption.

Assumption 4.1. All the possible digraphs of G(t) are balanced.

4.1. Stochastic consensus under additive noises. For the case with bal-
anced topologies, we define λ2(t) = λ2(L̂(t)) ≥ 0. Let us introduce the following
conditions for stochastic consensus:

(C1′)
∫∞

0 λ2(s)c(s)ds =∞.
(C4′′) limt→∞

∫ t
0 e
−2

∫ t
s
λ2(u)c(u)duc2(s)ds = 0.

Theorem 4.2. Suppose Assumptions 2.1 and 4.1 hold and fji(x) ≡ 0, i, j ∈ V.
Then the protocol (2.4) is a mean square weak consensus protocol if conditions (C1′)
and (C4′′) hold. Moreover, the protocol (2.4) is an AUMSAC protocol if conditions
(C1′) and (C2) hold.
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Proof. Similar to (3.3), we have

dx(t) = −c(t)(L(t)⊗ In)x(t)dt+ c(t)
N∑

i,j=1

aij(t)σji(ηN,i ⊗ 1n)dw1ji(t).(4.1)

Let JN = 1√
N

1N1TN and δ(t) = [(IN − JN ) ⊗ In]x(t). Under Assumption 4.1 and
by the property of the balanced digraph, we get dδ(t) = −c(t)(L(t) ⊗ In)δ(t)dt +
c(t)

∑N
i,j=1 aij(t)σji ((IN − JN )ηN,i ⊗ 1n)dw1ji(t). Using the Itô formula, we have

that for all t ≥ t1 ≥ 0,

‖δ(t)‖2 = ‖δ(t1)‖2 − 2
∫ t

t1

c(s)δT (s)(L̂(s)⊗ In)δ(s)ds

+n
N − 1
N

∫ t

t1

p(s)c2(s)ds+M7(t)−M7(t1),(4.2)

where p(t) =
∑N
i,j=1 aij(t)σ

2
ji ≤

∑N
i,j=1 σ

2
ji =: p̄ and M7(t) = 2

∑N
i,j=1

∫ t
0 δ

T (t) [(IN −
JN )ηN,i ⊗ 1n]aij(s)σjic(s)dw1ji(s). Note that Theorem 3 in [34] gives

(4.3) δT (L̂(t)⊗ In)δ ≥ λ2(t)‖δ‖2 ∀ 1T δ = 0.

Using this property and taking expectations on the both sides of (4.2), we obtain that
for any t ≥ t1 ≥ 0,

E‖δ(t)‖2 ≤ E‖δ(t1)‖2 − 2
∫ t

t1

λ2(s)c(s)E‖δ(s)‖2ds+ n
N − 1
N

p̄

∫ t

t1

c2(s)ds.(4.4)

By the comparison theorem, we also get that for any t ≥ 0,

E‖δ(t)‖2 ≤ ‖δ(0)‖2e−2
∫ t
0 λ2(s)c(s)ds + n

N − 1
N

p̄

∫ t

0
e−2

∫ t
s
λ2(u)c(u)duc2(s)ds.(4.5)

Hence, by (C1′) and (C4′′), limt→∞ E‖δ(t)‖2 = 0, which together with the definition
of δ(t) implies mean square weak consensus.

We now prove that (C1′) and (C2) guarantee mean square strong consensus. We
first claim that (C1′) and (C2) imply (C4′′). By (C2), for any ε > 0, there exists a
positive constant t2 = t2(ε), such that

∫∞
t2
c2(s)ds < ε/2, and then by (C1′) and (C2),

there exists a positive constant t3 = t3(ε) > t2, such that for any t > t3,

e
−

∫ t
t2
λ2(u)c(u)du

<
ε

2
∫∞

0 c2(s)ds
.

Hence, for any ε > 0, there exists T = T (ε) ≥ t3(ε), such that for any t > T ,∫ t

0
e−

∫ t
s
λ2(u)c(u)duc2(s)ds =

∫ t2

0
e−

∫ t
s
λ2(u)c(u)duc2(s)ds+

∫ t

t2

e−
∫ t

s
λ2(u)c(u)duc2(s)ds

≤ e−
∫ t

t2
λ2(u)c(u)du

∫ t2

0
c2(s)ds+

∫ ∞
t2

c2(s)ds < ε.

That is, condition (C4′′) holds. This together with (C1′) implies mean square weak
consensus.
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Note that G(t) is balanced and the probability measure π = 1N/N satisfies the
first assertion in Lemma 3.2. Similar to (3.5), we have from (4.1) that

(4.6) x̄(t) = x̄(0) + M̄(t),

where x̄(t) = 1
N

∑N
j=1 xj(t) and M̄(t) = 1

N 1n
∑N
i,j=1

∫ t
0 aij(s)σjic(s)dw1ji(s). It is

easy to see from (C2) that

(4.7) E‖M̄(t)‖2 =
n

N2

∫ t

0
p(s)c2(s)ds ≤ np̄

N2

∫ ∞
0

c2(s)ds <∞.

Then by methods similar to those in the proof of Theorem 3.20, we can obtain the
desired assertion.

Remark 4.3. In Theorem 4.2, we give the sufficient conditions for mean square
weak and strong consensus. In fact, we can also obtain some necessary conditions for
mean square weak and strong consensus if Ei 6= ∅, i = 1, . . . ,m0. To show this, let
λN (t) = λN (L̂(t)); then the condition Ei 6= ∅, i = 1, . . . ,m0, gives 0 < λN (t) ≤ λ̄N :=
max1≤i≤m0 λN (L̂i). This together with δT (t)(L̂(t)⊗ In)δ(t) ≤ λN (t)‖δ(t)‖2 and (4.2)
can produce E‖δ(t)‖2 ≥ ‖δ(0)‖2e−2λ̄N

∫ t
0 c(s)ds +

∫ t
0 e
−2λ̄N

∫ t
s
c(u)dup(t)c2(s)ds. Note

that p(t) ≥ mini,j∈V σ2
ji. Hence, (C1) and limt→∞

∫ t
0 e
−2λ̄N

∫ t
s
c(u)duc2(s)ds = 0 are

necessary for mean square weak consensus. Moreover, it can be observed from (4.7)
that conditions (C1) and (C2) are necessary for mean square strong consensus under
the condition Ei 6= ∅, i = 1, . . . ,m0.

Note that Theorem 4.2 does not tell us directly whether it can be relaxed that
G(t) contains a spanning tree for all t ≥ 0. In fact, Theorem 4.2 covers the case where
the graph flow {G(t), t ≥ 0} is switching and does not contain a spanning tree all the
time. For the switching graph flow {G(t), t ≥ 0}, let 0 = τ0 < τ1 < τ2 < · · · < ∞
be a sequence of switching time instants with ∪∞i=0[τi, τi+1) = [0,∞), such that G(t)
is fixed over [τi, τi+1) and G(τi+1) 6= G(τi), i = 0, 1, 2, . . . . We have the following
frequent connectivity assumption.

Assumption 4.4. There exists a strictly increasing subsequence {τik}∞k=0 ⊆ {τi}∞i=0,
with limk→∞ τik =∞ such that G(τik) contains a spanning tree, k = 0, 1, 2, . . . .

Note that Assumption 4.4 includes the periodic connectivity [15, 30] as the special
case. Bear in mind that the number of possible digraphs is finite. Then, under
Assumption 4.4, we know that λ2 := mink≥0 λ2(τik) > 0 and∫ ∞

0
λ2(s)c(s)ds =

∞∑
i=0

∫ τi+1

τi

λ2(τi)c(s)ds ≥ λ2

∞∑
j=0

∫ τij+1

τij

c(s)ds.

Hence (C1′) is implied by the condition below.
(C1′′)

∑∞
j=0

∫ τij+1

τij
c(s)ds =∞.

Then Theorem 4.2 leads to the following corollary.

Corollary 4.5. Suppose Assumptions 2.1, 4.1, and 4.4 hold and fji(x) ≡ 0,
i, j ∈ V. Then the protocol (2.4) is a mean square weak consensus protocol if (C1′′)
and (C4′′) hold. Moreover, the protocol (2.4) is an AUMSAC protocol if (C1′′) and
(C2) hold.

Remark 4.6. Define the dwell time of {G(t), t ≥ 0} as the infimum of the lengths
of maximum time intervals over which G(t) remains fixed, i.e., infi≥0(τi+1 − τi). If
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{G(t), t ≥ 0} has a positive dwell time and Assumption 4.4 holds with supk≥0(τik+1 −
τik) < ∞, then (C1′′) and (C2) are easily satisfied. For example, let τi = iτ ,
i = 0, 1, . . . , and τij = n0τj , j = 0, 1, . . . , for some positive constant τ and inte-
ger n0. Choose c(t) = 1

(1+t)3/4 . Then (C2) holds. In addition,
∑∞
j=0

∫ τij+1

τij
c(s)ds =∑∞

j=0

∫ n0jτ+τ
n0jτ

1
(1+t)3/4 dt ≥

∑∞
j=0

τ
(1+n0jτ+τ)3/4 =∞, which implies (C1′′).

Applying the semimartingale convergence theorem, we have the following almost
sure strong consensus.

Theorem 4.7. Suppose Assumptions 2.1 and 4.1 hold and fji(x) ≡ 0, i, j ∈ V.
Then the protocol (2.4) is an AUASAC protocol if conditions (C1′) and (C2) hold.
Moreover, if Assumption 4.4 holds, then the protocol (2.4) is an AUASAC protocol if
conditions (C1′′) and (C2) hold.

Proof. Applying the semimartingale convergence theorem to (4.2), we obtain that
limt→∞ ‖δ(t)‖ < ∞, a.s. By Theorem 4.2, we know that (C1′) (or (C1′′)) and (C2)
can guarantee the mean square strong consensus. Hence, limt→∞ E‖δ(t)‖2 = 0, which
implies that there exists a subsequence converging to zero almost surely. The unique-
ness of limit admits limt→∞ ‖δ(t)‖ = 0, a.s. Therefore, the almost sure weak consensus
follows. Note that under (C2),

(4.8) lim
t→∞
〈M̄〉(t) =

n

N2

∫ ∞
0

p(s)c2(s)ds ≤ np̄

N2

∫ ∞
0

c2(s)ds <∞,

where M̄(t) is defined in (4.6). Hence, by Proposition 1.8 in [38, p. 183], we have that
M̄(t) converges almost surely and the protocol (2.4) is an AUASAC protocol.

4.2. Stochastic consensus under compound noises. In this subsection, we
define κ(t) = c(t)(1− σ̄2N−1

N c(t)) and use the following condition.
(C6′) There exists a constant t0 > 0 such that κ(t) > 0 for all t ≥ t0.

We have the following theorem.

Theorem 4.8. Suppose that Assumptions 2.1, 2.2, and 4.1 hold. Then it follows
that the protocol (2.4) is a mean square weak consensus protocol if

∫∞
0 λ2(s)κ(s)ds =

∞, limt→∞
∫ t

0 e
−2

∫ t
s
λ2(u)κ(u)duc2(s)ds = 0, and (C6′) holds. Moreover, the protocol

(2.4) is an AUMSAC and AUASAC protocol if
∫∞

0 λ2(s)κ(s)ds =∞, (C2), and (C6′)
hold.

Proof. By techniques similar to those used in obtaining (4.2), we can get

d‖δ(t)‖2 = −Ṽ (t)dt+ dM8(t) + n
N − 1
N

N∑
i,j=1

aij(t)σ2
jic

2(t)dt,(4.9)

where Ṽ (t) = 2c(t)δT (t)(L̂(t)⊗In)δ(t)−c2(t)N−1
N

∑N
i,j=1 aij(t)‖fji(δj(t)−δi(t))‖2 and

M8(t) = 2
∑N
i,j=1

∫ t
0 c(s)aij(s)σjiδ

T (s)[(IN −JN )ηN,i⊗1n] dw1ji(s)+2
∑N
i,j=1

∫ t
0 c(s)

aij(s)δT (s)[(IN − JN )ηN,i ⊗ fji(δj(s)− δi(s))]dw2ji(s). Noting that the digraph G(t)
is balanced for each t ≥ 0 (Assumption 4.1), then the Laplacian matrix L(t) satisfies
the following sum-of-squares property:

(4.10) 2δT (t)(L̂(t)⊗ In)δ(t) =
N∑

i,j=1

aij(t)‖δj(t)− δi(t)‖2.
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By Assumption 2.2, we have

N∑
i,j=1

aij(t)‖fji(δj(t)− δi(t))‖2 ≤ 2σ̄2δT (t)(L̂(t)⊗ In)δ(t).(4.11)

Then Ṽ (t) ≥ 2c(t)(1 − N−1
N c(t)σ̄2)δT (t)(L̂(t) ⊗ In)δ(t). Substituting this inequality

into (4.9) yields

d‖δ(t)‖2 ≤ −2κ(t)δT (t)(L̂(t)⊗ In)δ(t)dt+ C6c
2(t)dt+ dM8(t),(4.12)

where C6 = nN−1
N

∑N
i,j=1 σ

2
ji. This together with (4.3) produces

d‖δ(t)‖2 ≤ −2λ2(t)κ(t)‖δ(t)‖2dt+ C6c
2(t)dt+ dM4(t).(4.13)

Note that (C6′) holds; then κ(t) > 0 for t ≥ t0. By the comparison theorem, we get
that for any t ≥ t0 ≥ 0,

E‖δ(t)‖2 ≤ E‖δ(t0)‖2e−2
∫ t

t0
λ2(s)κ(s)ds + C6

∫ t

t0

e−2
∫ t

s
λ2(u)κ(u)duc2(s)ds.(4.14)

Hence,
∫∞

0 λ2(s)κ(s)ds = ∞, and limt→∞
∫ t

0 e
−2

∫ t
s
λ2(u)κ(u)duc2(s)ds = 0 implies

limt→∞ E‖δ(t)‖2 = 0, which together with the definition of δ(t) implies the mean
square weak consensus. Then it remains only to repeat the corresponding part in the
proofs of Theorems 3.20 and 3.22.

Corollary 4.9. Suppose that Assumptions 2.1, 2.2, 4.1, and 4.4 hold. If (C1′′),
(C2), and (C6′) hold, then the protocol (2.4) is an AUMSAC and AUASAC protocol.

Proof. Note that λ2 = mink≥0 λ2(τik) > 0. By the definition of κ(t), we have∫ ∞
0

λ2(s)κ(s)ds =
∫ ∞

0
λ2(s)c(s)ds− N − 1

N
σ̄2
∫ ∞

0
λ2(s)c2(s)ds

≥ λ2

∞∑
j=0

∫ τij
+τ

τij

c(s)ds− N − 1
N

σ̄2λ̄N

∫ ∞
0

c2(s)ds.

Hence, (C1′′) and (C2) imply
∫∞

0 λ2(s)κ(s)ds = ∞, and then the desired assertions
follow from Theorem 4.8.

Remark 4.10. Combining Corollary 4.5, Theorem 4.7, and Corollary 4.9, we can
see that if (C1′′) and (C2) hold, then the multiplicative noises with small intensities
satisfying σ̄2 < N

(N−1) supt≥0 c(t)
do not affect the control gain to guarantee mean square

and almost sure strong consensus.

5. Simulation examples. We consider the stochastic consensus for a four-agent
example. Consider a dynamic network of four scalar agents with the topology graph
G = {V, E ,A}, where V = {1, 2, 3, 4}, E = {(1, 2), (2, 3), (4, 3), (3, 2), (2, 1)}, and
A = [aij ]4×4 with a12 = a21 = a23 = a32 = a34 = 1 and other values being zero.
It is easy to see that the graph G contains a spanning tree. The initial value is
x(0) = [−7, 4, 3,−8]T .
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Additive noise case. Assume that σji = 0.8, i, j = 1, 2, 3, 4. We first choose
the control gain c(t) as c(t) = (1 + t)−1/3. Then it can be seen that conditions (C1)
and (C5) hold. Hence, Theorem 3.12 tells us that the four agents achieve almost sure
weak consensus, and the necessary condition (C2) in Theorem 3.9 implies that the four
agents never achieve almost sure strong consensus under c(t) = (1 + t)−1/3. That is,
all agents’ states will converge in the future, but cannot converge to a common value,
which is depicted in Figure 1. However, if we choose the control gain c(t) = (1 + t)−1,
then conditions (C1)–(C2) hold. Theorem 3.9 gives that almost sure strong consensus
is achieved. That is, all agents’ states will tend to a common value, which is depicted
in Figure 2.
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Fig. 1. States of the four agents with additive noises: c(t) = (1 + t)−1/3.
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Fig. 2. States of the four agents with additive noises: c(t) = (1 + t)−1.
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Under c(t) = (1 + t)−1/2, Corollary 3.7 gives mean square weak consensus. To
simulate such behavior, we consider the relative state mean square errors {E|xi(t)−
x1(t)|2}i=2,3,4. We generate 103 sample paths. Then, taking the mean square average,
we obtain Figure 3, which shows that the agents achieve mean square weak consensus.
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Fig. 3. Mean square errors with additive noises: c(t) = (1 + t)−1/2.

Compounding noise case. Assume additionally that a43 = 1; then the graph
G is balanced. Let fji(x) = 0.2x, i, j = 1, 2, 3, 4. We first see from Corollary 3.21
that the choice c(t) = (1 + t)−1/2 can guarantee the mean square weak consensus of
the four agents with compound noises, which is revealed in Figure 4. If we choose
c(t) = (1 + t)−1, then Theorem 3.22 gives that the four agents can achieve almost
sure strong consensus, which is shown in Figure 5.
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Fig. 5. States of the four agents with compound noises: c(t) = (1 + t)−1.

6. Concluding remarks. In this work, consensus conditions have been exam-
ined for the multi-agent systems with additive and multiplicative measurement noises.
Based on the matrix theory and the algebraic graph theory, we utilize the variable
transformation to transform the closed-loop system into a nonautonomous stochastic
differential equation (SDE) driven by the additive or the compound noises. By estab-
lishing the stochastic stability of SDEs with additive noises, some necessary conditions
and sufficient conditions were obtained for mean square weak consensus and almost
sure weak and strong consensus under fixed topologies and additive noises. When the
multiplicative noises appear, some necessary conditions and sufficient conditions for
mean square and almost sure consensus were obtained. The efforts have also been
devoted to the networks with time-varying topologies, and we have shown that mean
square and almost sure consensus can be guaranteed under the periodical connectivity
of the topology flow.

When the additive noise vanishes, the current results actually show that the time-
varying control gain can be used to guarantee stochastic consensus of multi-agent
systems with multiplicative noises. In the future, it will be of interest to consider
the second-order consensus and containment control, and take the time-delay into
consideration.

Appendix A. Proofs of lemmas in section 3.

Lemma A.1 (semimartingale convergence theorem [23]). Let A1(t) and A2(t) be
the two Ft-adapted increasing processes on t ≥ 0 with A1(0) = A2(0) = 0, a.s. Let
M(t) be a real-valued local martingale with M(0) = 0, a.s., and let ζ be a nonnegative
F0-measurable random variable. Assume that X(t) is nonnegative and

X(t) = ζ +A1(t)−A2(t) +M(t), t ≥ 0.

If limt→∞A1(t) <∞, a.s., then for almost all ω ∈ Ω,

lim
t→∞

X(t) <∞ and lim
t→∞

A2(t) <∞.
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Proof of Lemma 3.2. If the digraph G contains a spanning tree, then from Lemma
4 in [14], there exists a unique probability measure π such that πTL = 0. Hence, for
assertion 1, we need only consider the case that the digraph G does not contain a
spanning tree. In this case, there exist at least two separate subgroups or at least
two agents in the group who do not receive any information. Then there exists an
elementary translational transformation S such that

(A.1) STLS =

 L11 0 0
L21 L22 L23
0 0 L33

 ,

where L11 is a Laplacian matrix related to a nonempty communicating class C =
{i1, . . . , is}, s < N , and L21,L22,L23,L33 are matrices with the appropriate dimen-
sions. Therefore, there exists a probability measure π̃ such that π̃TL11 = 0. Let
π̂ = (π̃T , 0, . . . , 0)T ; then π̂TSTLS = 0. Let π = Sπ̂; then πTL = 0 due to the
reversibility of S.

For assertion 2, we introduce the following class of N × (N − k) matrices:

(A.2) C =
{
φ ∈ RN×(N−k)|span{φ} = span{L}

}
,

where k ≥ 1 denotes the number of zero eigenvalues and span{L} denotes the linear
space spanned by the columns of L. Then rank(L) = N − k, and each φ ∈ C has
rank(φ) = N − k. Denote S = span{φ} = span{L}. We claim that 1N /∈ S.
Otherwise, 1N ∈ S, then there exists ξ ∈ RN such that 1N = Lξ, and then 0 <
πT1N = πTLξ = 0, which is a contradiction. Hence, we have rank(( 1√

N
1N , φ)) =

N − k + 1. We can choose ϕ ∈ RN×(k−1) such that rank(( 1√
N

1N , φ, ϕ)) = N . Let

Q̃ = (φ, ϕ); then Q = ( 1√
N

1N , Q̃) is nonsingular. Let Q−1 = [
νT

Q
], where νT is the

first row of Q−1. Hence, 1√
N
νT1N = 1 and νTφ = 0. Note that L ∈ span{φ}. Then

there exists an (N − k) × N matrix Γ such that L = φΓ, which implies νTL = 0.
Therefore, the second matrix equality in (3.1) holds. Assertion 3 and the special case
are from [14] and [12].

Proof of Lemma 3.3. By the Jordan matrix decomposition, there exists an invert-
ible matrix P1 such that P−1

1 DP1 = JD. Here, JD is the Jordan normal form of D,
i.e.,

JD = diag(Jλ1,n1 , Jλ2,n2 , . . . , Jλl,nl
),

l∑
k=1

nk = m,

where λ1, λ2, . . . , λl are all the eigenvalues of D and

Jλk,nk
=


λk 1 · · · 0 0
0 λk · · · 0 0
...

...
. . .

...
...

0 0 · · · λk 1
0 0 · · · 0 λk


is the corresponding Jordan block of size nk with eigenvalue λk. Letting ζ(t) =
P−1

1 X(t), we have

dζ(t) = −c1(t)JDζ(t)dt+
d∑
i=1

P1ic2(t)dwi(t),(A.3)
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where P1i = P−1
1 σi. Considering the kth Jordan block and the corresponding com-

ponents ζk = [ζk,1, . . . , ζk,nk
]T and P1i(k) = [pik,1, . . . , p

i
k,nk

]T , where ζk,j and pik,j are
the (

∑k−1
i=1 ni + j)th elements of ζ and P1i, respectively, we have

dζk(t) = −c1(t)(Jλk,nk
)ζk(t)dt+

d∑
i=1

P1i(k)c2(t)dwi(t).

This implies that

dζk,nk
(t) = −c1(t)λkζk,nk

(t)dt+
d∑
i=1

pik,nk
c2(t)dwi(t)(A.4)

and for j = 1, . . . , nk − 1,

dζk,j(t) = −c1(t)λkζk,j(t)dt− c1(t)ζk,j+1(t)dt+
d∑
i=1

pik,jc2(t)dwi(t),(A.5)

which are semidecoupled equations. By means of a variation of constants formula for
(A.4) and (A.5), we obtain

ζk,nk
(t) = e−λk

∫ t
0 c1(u)duζk,nk

(0) + Zk,nk
(t)(A.6)

and

ζk,j(t) = e−λk

∫ t
0 c1(u)duζk,j(0) + Zk,j(t)−

∫ t

0
e−λk

∫ t
s
c1(u)duc1(s)ζk,j+1(s)ds,(A.7)

where Zk,j(t) =
∑d
i=1 p

i
k,j

∫ t
0 e
−λk

∫ t
s
c1(u)duc2(s)dwi(s), j = 1, . . . , nk. Then the mean

square asymptotic stability is equivalent to limt→∞ E‖ζk,j(t)‖2 = 0, k = 1, . . . , l,
j = 1, 2, . . . , nk for any initial value X(0).

Sufficiency. We can see from (A.6) that

E‖ζk,nk
(t)‖2 = e−2Re(λk)

∫ t
0 c1(u)du‖ζk,nk

(0)‖2

+Ck,nk

∫ t

0
e−2Re(λk)

∫ t
s
c1(u)duc22(s)ds,(A.8)

where Ck,nk
=
∑d
i=1 ‖pik,nk

‖2. Note that Re(λk) > 0,
∫∞

0 c1(s)ds = ∞, and limt→∞∫ t
0 e
−2λ

∫ t
s
c1(u)duc22(s)ds = 0. Hence, limt→∞ E‖ζk,nk

(t)‖2 = 0. We now use the
backstepping method to prove limt→∞ E‖ζk,j(t)‖2 = 0, k = 1, . . . , l, j = 1, 2, . . . , nk.
That is, assuming that limt→∞ E‖ζk,j+1(t)‖2 = 0 for some fixed j < nk, we will show
limt→∞ E‖ζk,j(t)‖2 = 0. It is easy to see from (A.7) that

E‖ζk,j(t)‖2 ≤ 2e−2Re(λk)
∫ t
0 c1(u)du‖ζk,j(0)‖2 + Ck,j

∫ t

0
e−2Re(λk)

∫ t
s
c1(u)duc22(s)ds

+ 2E
(∫ t

0
e−Re(λk)

∫ t
s
c1(u)duc1(s)‖ζk,j+1(s)‖ds

)2
,

where Ck,j =
∑d
i=1 ‖pik,j‖2. Note that the first two terms tend to zero; then we

need only prove that the last term vanishes at infinite time. Let k, j be fixed, and
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write Sk,j(t) =
∫ t

0 e
−Re(λk)

∫ t
s
c1(u)duc1(s)‖ζk,j+1(s)‖ds. By Minkowski’s inequality for

integrals, we have√
E(Sk,j(t))2 ≤

∫ t

0
e−Re(λk)

∫ t
s
c1(u)duc1(s)

√
E‖ζk,j+1(s)‖2ds.

Let Q(t) =
∫ t

0 e
Re(λk)

∫ s
0 c1(u)duc1(s)

√
E‖ζk,j+1(s)‖2ds. Then if limt→∞Q(t) <∞, we

get from
∫∞

0 c1(s)ds =∞ that

lim
t→∞

√
E(Sk,j(t))2 ≤ lim

t→∞
e−Re(λk)

∫ t
0 c1(u)duQ(t) = 0.

Note that limt→∞ E|ζk,j+1(s)|2 = 0; then if limt→∞Q(t) =∞, l’Hôpital’s rule gives

lim
t→∞

√
E(Sk.j(t))2 ≤ lim

t→∞

Q(t)

eRe(λk)
∫ t
0 c(u)du

= lim
t→∞

√
E‖ζk,j+1(t)‖2

Re(λk)
= 0.

Hence, we have limt→∞ E‖Sk,j(t)‖2 = 0. Above all, we have shown that

lim
t→∞

E‖ζk,j(t)‖2 = 0 ∀j < nk.

Repeating the induction above gives limt→∞ E‖ζk,j(t)‖2 = 0 for all j = 1, . . . , nk, and
therefore, limt→∞ E‖ζk,j(t)‖2 = 0 for all k = 1, . . . , l and j = 1, . . . , nk. That is, the
mean square asymptotic stability follows, and the sufficiency is proved.

Necessity. Assume that ‖ζ(0)‖2 6= 0, limt→∞ E‖ζk,j(t)‖2 = 0, k = 1, . . . , l, j =
1, . . . , nk. From (A.8), we can see that for any ‖ζk,nk

(0)‖2 6= 0, limt→∞ E‖ζk,nk
(t)‖2 =

0 implies
∫∞

0 c1(s)ds =∞, Re(λk) > 0, and

(A.9) Ck,nk
lim
t→∞

∫ t

0
e−2Re(λk)

∫ t
s
c1(u)duc22(s)ds = 0, k = 1, . . . , l.

Hence,
∫∞

0 c1(s)ds =∞ and Re(λk) > 0, k = 1, . . . , l. It remains to show that limt→∞∫ t
0 e
−2λ̄

∫ t
s
c1(u)duc22(s)ds = 0.

Note that σi 6= 0 for certain i and P1 is invertible. Hence, there must ex-
ist k, j such that Ck,j > 0, 0 < j ≤ nk. Let k be fixed. If Ck,nk

> 0, then
(A.9) gives limt→∞

∫ t
0 e
−2Re(λk)

∫ t
s
c1(u)duc22(s)ds = 0, which also produces limt→∞∫ t

0 e
−2λ̄

∫ t
s
c1(u)duc22(s)ds = 0. If Ck,nk

= 0, we define l0 = max{nk > j > 1, Ck,j =∑d
i=1 ‖pik,j‖2 > 0}. Then we have from (A.7) that

E‖Zk,l0(t)‖2 ≤ 3E‖ζk,l0(t)‖2 + 3e−2Re(λk)
∫ t
0 c1(u)du‖ζk,l0(0)‖2 + 3E‖Sk,l0(t)‖2.(A.10)

Employing methods similar to those used in proving the sufficiency, we can obtain
limt→∞ E‖Sk.l0(t)‖2 = 0, and then limt→∞ E‖Zk,l0(t)‖2 = 0. Note that

E‖Zk,l0(t)‖2 = Ck,l0

∫ t

0
e−2Re(λk)

∫ t
s
c1(u)duc22(s)ds,

where Ck,l0 > 0. Therefore, the necessity is proved.

Proof of Lemma 3.4. The proof is split into the following four parts:
(a) We prove that

∫∞
0 c1(s)ds = ∞ and

∫∞
0 c22(s)ds < ∞ imply the almost sure

asymptotic stability. We first show that
∫∞

0 c1(s)ds = ∞ and
∫∞

0 c22(s)ds < ∞
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imply limt→∞
∫ t

0 e
−2λ

∫ t
s
c1(u)duc22(s)ds = 0. For any ε > 0, by

∫∞
0 c22(s)ds < ∞,

there exists a positive constant t0 = t0(ε), such that
∫∞
t0
c22(s)ds < ε/2, and then

by
∫∞

0 c1(s)ds = ∞, there exists a positive constant t1 = t1(ε) > t0, such that

e
−2λ

∫ t
t0
c1(u)du

< ε/(2
∫∞

0 c22(s)ds). Hence, for any ε > 0, there exists T = T (ε) ≥
t1(ε), such that for any t > T ,∫ t

0
e−2λ

∫ t
s
c1(u)duc22(s)ds ≤

∫ t0

0
e−2λ

∫ t
s
c1(u)duc22(s)ds+

∫ t

t0

e−2λ
∫ t

s
c1(u)duc22(s)ds

≤ e−2λ
∫ t

t0
c1(u)du

∫ t0

0
c22(s)ds+

∫ ∞
t0

c22(s)ds ≤ ε.

That is, limt→∞
∫ t

0 e
−2λ

∫ t
s
c1(u)duc22(s)ds = 0. Then, by Lemma 3.3, limt→∞ E‖X(t)‖2

= 0 for any X(0) ∈ Rm. Note that every eigenvalue of D has strictly positive real part;
then there exists a positive definite matrix P such that DTP + PD = Im. Letting
V (t) = X(t)TPX(t) and applying the Itô formula yields
(A.11)

V (t) = V (0)−
∫ t

0
c1(s)‖X(s)‖2ds+ C

∫ t

0
c22(s)ds+ 2

∫ t

0

d∑
i=1

X(s)TPσic2(s)dwi(s),

where C =
∑d
i=1 σ

T
i Pσi > 0. Then the semimartingale convergence theorem gives

that limt→∞ V (t) <∞, a.s., which together with the definiteness of P implies limt→∞
‖X(t)‖ <∞, a.s. Notice that limt→∞ E‖X(t)‖2 = 0 implies that there exists a subse-
quence converging to zero almost surely. The uniqueness of limit admits limt→∞ ‖X(t)‖
= 0, a.s. Therefore, the almost sure asymptotic stability follows.

(b) We prove that if
∫∞

0 c1(s)ds = ∞ and limt→∞ c22(t) log
∫ t

0 c1(s)ds/c1(t) = 0,
then the solution to (3.2) is almost sure asymptotically stable. Note that the almost
sure asymptotic stability is equivalent to limt→∞ ‖ζk,j(t)‖ = 0, a.s., for all k = 1, . . . , l,
j = 1, 2, . . . , nk, and any initial value X(0), where ζk,j(t) is defined by (A.4) and (A.5).

We first fix k and show limt→∞ ‖ζk,nk
(t)‖ = 0, a.s., under

∫∞
0 c1(s)ds = ∞,

limt→∞ c22(t) log
∫ t

0 c1(s)ds/c1(t) = 0, and Re(λk) > 0. It can be seen that limt→∞

e−λ1
∫ t
0 c1(s)ds = 0. Then in order for limt→∞ ‖ζk,nk

(t)‖ = 0, a.s., we need to show
that limt→∞ Zk,nk

(t) = 0, a.s. Let

Mk,nk
(t) =

d∑
l=1

plk,nk

∫ t

0
c2(s)dwi(s),

M1
k (t) =

d∑
l=1

Re(plk,nk
)
∫ t

0
c2(s)dwi(s), M2

k (t) =
d∑
l=1

Im(plk,nk
)
∫ t

0
c2(s)dwi(s);

then Mk,nk
(t) = M1

k (t)+iM2
k (t), where i2 = −1, and M1

k (t) and M2
k (t) are real-valued

martingales. Letting M̄k(t) =
∫ t

0 e
λk

∫ s
0 c1(u)dudMk,nk

(s), we get

M̄k(t) =
∫ t

0
eRe(λk)

∫ s
0 c1(u)du cos(pk(s))dM1

k (s)

−
∫ t

0
eRe(λk)

∫ s
0 c1(u)du sin(pk(s))dM2

k (s)

+ i

∫ t

0
eRe(λk)

∫ s
0 c1(u)du sin(pk(s))dM1

k (s)
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+ i

∫ t

0
eRe(λk)

∫ s
0 c1(u)du cos(pk(s))dM2

k (s)

=: m̄k1(t)− m̄k2(t) + im̄k3(t) + im̄k4(t),(A.12)

where pk(s) = Im(λk)
∫ s

0 c1(u)du. Note that

Zk,nk
(t) = e−λk

∫ t
0 c1(u)duM̄k(t)

= e−Re(λk)
∫ t
0 c1(u)du( cos(pk(t)) + i sin(pk(t))

)
M̄k(t).(A.13)

Hence, for limt→∞ Zk,nk
(t) = 0, a.s., it is enough to show that

zkj(t) = e−Re(λk)
∫ t
0 c1(u)du cos(pk(t))m̄kj(t)

and
z̄kj(t) = e−Re(λk)

∫ t
0 c1(u)du sin(pk(t))m̄kj(t), j = 1, 2, 3, 4,

tend to zero almost surely as t→∞. Here, we show only limt→∞ zk1(t) = 0, a.s., and
the others can be obtained similarly. Note that m̄k1(t) is a continuous martingale,
vanishing at zero. Then we have that either

(A.14) lim
t→∞
〈m̄k1〉(t) = Ck,nk

∫ ∞
0

e2Re(λk)
∫ s
0 c1(u)du cos2(pk(s))c22(s)ds <∞

or

(A.15) lim
t→∞
〈m̄k1〉(t) =∞,

where Ck,nk
=
∑d
i=1 |Re(pik,nk

)|2. In case (A.14), the martingale M1(t) converges
almost surely to a finite limit by the martingale convergence theorem [38, Proposition
1.8, p. 183]. Noting

∫∞
0 c1(s)ds =∞, Re(λk) > 0, and

zk1(t) = e−Re(λk)
∫ t
0 c1(u)du cos(pk(t))m̄k1(t),

we immediately have the desired result limt→∞ zk1(t) = 0, a.s. In case (A.15), we use
the law of the iterated logarithm for martingales (see [38, p. 186]),

(A.16) lim sup
t→∞

|m̄k1(t)|√
2〈m̄k1〉(t) log log(〈m̄k1〉(t))

= 1, a.s.

Thus, for all ω in an a.s. event, there is a finite T (ω) > 0 such that for all t > T (ω),
log log(〈m̄k1〉(t)) > 0 and

(A.17) |zkj(t)| ≤ 2
√
e−2Re(λk)

∫ t
0 c1(s)ds〈m̄k1〉(t) log log(〈m̄k1〉(t)), a.s.

Let C(t) =
∫ t

0 e
−2Re(λk)

∫ t
s
c1(u)du cos2(pk(s))c22(s)ds log

∫ t
0 c1(s)ds. By l’Hôpital’s rule

and limt→∞ c22(t) log
∫ t

0 c1(s)ds/c1(t) = 0, we have

lim
t→∞

C(t) = lim
t→∞

∫ t
0 e

2Re(λk)
∫ s
0 c1(u)du cos2(pk(s))c22(s)ds

e2Re(λk)
∫ t
0 c1(u)du log−1 ∫ t

0 c1(s)ds

= lim
t→∞

c22(t) log
∫ t

0 c1(u)du cos2(pk(t))/c1(t)
2Re(λk)− 1∫ t

0 c1(u)du log
∫ t
0 c1(s)ds

= 0.(A.18)
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Hence, for any ε ∈ (0, 1) satisfying Ck,nk
ε < 1, there exists T (ε) > 0 such that∫ t

0 c1(s)ds > e and
∫ t

0 e
2Re(λk)

∫ s
0 c1(u)duc22(s)ds ≤ εe2Re(λk)

∫ t
0 c1(u)du for all t > T (ε).

This also implies

log log
(
Ck,nk

∫ t

0
e2Re(λk)

∫ s
0 c1(u)duc2(s)ds

)
≤ log(2Re(λk)) + log

∫ t

0
c1(u)du.

Thus, for t > max{T (ω), T (ε)}, we have from (A.17)

|zk1(t)|2 ≤ 4Ck,nk

∫ t

0
e−2Re(λk)

∫ t
s
c1(u)duc22(s)ds

[
log(2Re(λk)) + log

∫ t

0
c1(s)ds

]
.

This together with (A.18) gives limt→∞ ‖zk1(t)‖ = 0, a.s. Similarly, we have limt→∞
‖zkj(t)‖ = 0, a.s., and limt→∞ ‖z̄kj(t)‖ = 0, a.s., j = 1, 2, 3, 4. Hence, limt→∞ Zk,nk

(t)
= 0, a.s. Therefore, limt→∞ ‖ζk,nk

(t)‖ = 0, a.s.
We now use the the backstepping method to prove limt→∞ ‖ζk,j(t)‖ = 0, a.s., for

all j = 1, . . . , nk. Assume that limt→∞ ‖ζk,j+1(t)‖ = 0, a.s., for certain j < nk. We
will show that limt→∞ ‖ζk,j(t)‖ = 0, a.s. Note that ζk,j(t) satisfies (A.5). Then we
have

|ζk,j(t)| ≤ e−Re(λk)
∫ t
0 c1(u)du‖ζk,j(0)‖+ ‖Zk,j(t)‖+ Sk,j(t),

where Sk,j(t) =
∫ t

0 e
−Re(λk)

∫ t
s
c1(u)duc1(s)‖ζk,j+1(s)‖ds. Similarly to the estimation of

ζk,nk
(t) above, we can obtain

lim
t→∞

e−Re(λk)
∫ t
0 c1(u)du‖ζk,j(0)‖ = 0 and lim

t→∞
‖Zk,j(t)‖ = 0, a.s.

Hence, we need only show

lim
t→∞

Sk.j(t) = lim
t→∞

∫ t

0
e−Re(λk)

∫ t
s
c1(u)duc1(s)‖ζk,j+1(s)‖ds = 0, a.s.

Let k, j be fixed, and let Q̄(t) =
∫ t

0 e
Re(λk)

∫ s
0 c1(u)duc1(s)‖ζk,j+1(s)‖ds. If limt→∞ Q̄(t) <

∞, then from
∫∞

0 c1(s) ds =∞, we get

lim
t→∞

Sk,j(t) ≤ lim
t→∞

e−Re(λk)
∫ t
0 c1(u)duQ̄(t) = 0.

Otherwise, limt→∞ Q̄(t) =∞; then, by l’Hôpital’s rule, we still have

lim
t→∞

Sk,j(t) = lim
t→∞

Q̄(t)

eRe(λk)
∫ t
0 c1(u)du

=
1

Re(λk)
lim
t→∞

‖ζk,j+1(s)‖ = 0, a.s.

Hence, limt→∞ ‖ζk,j(t)‖ = 0, a.s. By repeating the induction above for j = 1, . . . , nk,
we have limt→∞ ‖ζk,j(t)‖ = 0, a.s., for all j = 1, . . . , nk. Repeating the process above
for k = 1, 2, . . . , l gives limt→∞ ‖X(t)‖ = 0, a.s., and then the almost sure asymptotic
stability follows.

(c) We prove that almost sure asymptotical stability implies Re(λk) > 0, k =
1, . . . , l, and

∫∞
0 c1(s)ds =∞.

We now assume that the solution to (3.2) is almost sure asymptotically stable. By
methods similar to those used in the proof of Lemma 3.3, we can obtain (A.6). Note
that the first term on the right-hand side of (A.6) is deterministic and convergent for



CONSENSUS WITH ADDITIVE AND MULTIPLICATIVE NOISES 49

each ζk,nk
(0). Hence, limt→∞ ‖ζk,nk

(t)‖ = 0, a.s., gives limt→∞ e−λk

∫ t
0 c1(u)du = 0,

which also implies Re(λk) > 0, k = 1, . . . , l, and
∫∞

0 c1(s)ds =∞.
(d) We prove that if all the eigenvalues of the matrix D are real, then almost

sure asymptotical stability implies Re(λk) > 0, k = 1, . . . , l,
∫∞

0 c1(s)ds = ∞, and
lim inft→∞ c22(t) log

∫ t
0 c1(s)ds/c1(t) = 0.

Note that the necessity of every eigenvalue of D having strictly positive real
part and

∫∞
0 c1(s)ds = ∞ is proved in (c). Hence, it remains to prove necessity of

lim inft→∞ c22(t) log
∫ t

0 c1(s)ds/c1(t) = 0 for almost sure stability under
∫∞

0 c1(s)ds =
∞ and λk > 0, k = 1, . . . , l.

Due to the fact that all the eigenvalues of the matrix D are real, the Jordan matrix
decomposition in the proof of Lemma 3.3 can be obtained under a real invertible
matrix P1 such that P−1

1 DP1 = JD. In view of this, the coefficients in (A.4) and
(A.5) are real. Note that the almost sure asymptotic stability gives that for any
initial value ζ(0), limt→∞ ‖ζk,nk

(t)‖ = 0, a.s., k = 1, 2, . . . , l. This together with
(A.6) implies that

(A.19) lim
t→∞

‖Zk,nk
(t)‖ = 0, a.s.

Let M̂k,j(t) =
∑d
i=1 p

i
k,j

∫ t
0 e

λk

∫ s
0 c1(u)duc2(s)dwi(s), j = 1, . . . , nk. Then Zk,j(t) =

e−λk

∫ t
0 c1(u)duMk,j , and

(A.20) lim
t→∞
〈M̂k,j〉(t) = Ck,j

∫ t

0
e2λk

∫ s
0 c1(u)duc22(s)ds, j = 1, 2, . . . , nk,

where Ck,j =
∑d
i=1 ‖pik,j‖2. Note that σi 6= 0 for certain i and P1 is invertible. Hence

there must exist k, j such that Ck,j > 0, 0 < j ≤ nk. Let k be fixed. We first assume
that Ck,nk

> 0 and claim that (A.19) implies lim inft→∞ c22(t) log
∫ t

0 c1(s)ds/c1(t) = 0
holds. We suppose now, contrary to the desired result, that

lim inf
t→∞

c22(t) log
∫ t

0
c1(s)ds/c1(t) 6= 0;

then there is c > 0 such that

(A.21) lim inf
t→∞

c22(t) log
∫ t

0 c1(u)du
c1(t)

> c,

which implies that for some T > 0,

(A.22)
c22(t) log

∫ t
0 c1(u)du

c1(t)
>
c

2
, t > T.

Then we have that for t > T ,∫ t

0
e2λk

∫ s
0 c1(u)duc22(s)ds ≥ c

2

∫ t
T
e2λk

∫ s
0 c1(u)duc1(s)ds

log
∫ t

0 c1(u)du
,(A.23)

which together with (A.20) gives limt→∞〈M̂k,nk
〉(t) =∞. By the law of the iterated

logarithm for martingales, we have lim supt→∞
‖Zk,nk

(t)‖2

Z1(t) = 1, a.s., where

Z1(t) = 2e−2λk

∫ t
0 c1(s)ds〈M̂k,j〉(t) log log〈M̂k,j〉(t).
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Therefore, if limt→∞ ‖Zk,nk
(t)‖ = 0, a.s., then we must have lim inft→∞ Z1(t) = 0.

Note that (A.23) implies that

(A.24) lim inf
t→∞

log log
∫ t

0 e
2λk

∫ s
0 c1(u)duc22(s)ds

log
∫ t

0 c1(u)du
≥ 1

and

e−2λk

∫ t
0 c1(s)ds

∫ t

0
e2λk

∫ s
0 c1(u)duc22(s)ds log

∫ t

0
c1(u)du

≥ c

2

∫ t
T
e2λk

∫ s
0 c1(u)duc1(s)ds

e2λk

∫ t
0 c1(s)ds

, t > T.(A.25)

Note that l’Hôpital’s rule and
∫∞

0 c1(s) ds =∞ give

(A.26) lim
t→∞

∫ t
T
e2λk

∫ s
0 c1(u)duc1(s)ds

e2λk

∫ t
0 c1(s)ds

=
1

2λk
.

By the definition of Z1(t) and (A.24), (A.25), (A.26), we get

lim inf
t→∞

Z1(t) ≥ Ck,nk
c lim inf
t→∞

log log
∫ t

0 e
2λk

∫ s
0 c1(u)duc22(s)ds

log
∫ t

0 c1(u)du

×
∫ t
T
e2λ

∫ s
0 c1(u)duc1(s)ds

e2λ
∫ t
0 c1(s)ds

>
Ck,nk

c

2λk
> 0,

which is a contradiction, and then lim inft→∞ c22(t) log
∫ t

0 c1(s)ds/c1(t) = 0. If Ck,nk
=

0, we define l0 = max{nk > j > 1, Ck,j =
∑d
i=1 ‖pik,j‖2 > 0}. Then we have from

(A.7) that

‖Zk,l0(t)‖ ≤ ‖ζk,l0(t)‖+ e−2λk

∫ t
0 c1(u)du‖ζk,l0(0)‖+ ‖Sk,l0(t)‖.(A.27)

Note that limt→∞ ‖ζk,l0(t)‖ = 0, λk > 0, and limt→∞ ‖Sk,l0(t)‖ = 0. Hence, limt→∞
‖Zk,l0(t)‖2 = 0. By methods similar to those used for Ck,nk

> 0 above, we can obtain
that lim inft→∞ c22(t) log

∫ t
0 c1(s)ds/c1(t) = 0 under Ck,l0 > 0. Therefore, the proof is

complete.
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